Weak Completeness Notions for Exponential Time

  • Klaus Ambos-Spies
  • Timur BakibayevEmail author


Lutz (SIAM J. Comput. 24(6), 1170–1189, 1995) proposed the following generalization of hardness: While a problem A is hard for a complexity class C if all problems in C can be reduced to A, Lutz calls a problem weakly hard if a nonnegligible part of the problems in C can be reduced to A. For the linear exponential time class E = DTIME(2lin), Lutz formalized these ideas by introducing a resource-bounded (pseudo) measure on this class and by saying that a subclass of E is negligible if it has measure 0 in E. In this paper we introduce two new weak hardness notions for E – E-nontriviality and strongly E-nontriviality. They generalize Lutz’s weak hardness notion for E, but are much simpler conceptually. Namely, a set A is E-nontrivial if, for any k ≥ 1, there is a set Bk ∈E which can be reduced to A (by a polynomial time many-one reduction) and which cannot be computed in time O(2kn), and a set A is strongly E-nontrivial if the set Bk can be chosen to be almost everywhereO(2kn)-complex, i.e. if Bk can be chosen such that any algorithm that computes Bk runs for more than 2k|x| steps on all but finitely many inputs x.


Exponential time Completeness Weak completeness Resource-bounded measure Almost everywhere complexity 



We thank the referees for their very helpful comments and suggestions.


  1. 1.
    Ambos-Spies, K.: Randomness relativizations, and polynomial reducibilities. Structure in complexity theory (Berkeley, Calif., 1986), 23–34, Lecture Notes in Comput Sci., vol. 223. Springer, Berlin (1986)Google Scholar
  2. 2.
    Ambos-Spies, K.: Minimal pairs for polynomial time reducibilities. Computation theory and logic, 1–13, Lecture Notes in Comput Sci., vol. 270. Springer, Berlin (1987)Google Scholar
  3. 3.
    Ambos-Spies, K.: Honest polynomial time reducibilities and the P =? NP problem. J. Comput. Syst. Sci. 39(3), 250–281 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambos-Spies, K.: Resource-bounded genericity. Computability, enumerability, unsolvability, 1–59, London Math. Soc. Lecture Note Ser., vol. 224. Cambridge Univ. Press, Cambridge (1996)Google Scholar
  5. 5.
    Ambos-Spies, K.: Polynomial time reducibilities and degrees. Handbook of computability theory, 683–705, Stud. Logic Found. Math., 140, North-Holland, Amsterdam (1999)Google Scholar
  6. 6.
    Ambos-Spies, K, Bakibayev, T.: Weak completeness notions for exponential time. Automata, languages and programming. Part I, 503–514, Lecture Notes in Comput Sci., vol. 6198. Springer, Berlin (2010)zbMATHGoogle Scholar
  7. 7.
    Ambos-Spies, K., Bakibayev, T.: Nontriviality for exponential time w.r.t. weak reducibilities. Theoret. Comput. Sci. 494, 2–12 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ambos-Spies, K., Bakibayev, T.: Comparing nontriviality for. E and EXP. Theory Comput. Syst. 51(1), 106–122 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ambos-Spies, K., Mayordomo, E., Zheng, X.: A comparison of weak completeness notions. In: Proceedings of the 11th annual IEEE conference on computational complexity, 171–178 (1996)Google Scholar
  10. 10.
    Ambos-Spies, K., Terwijn, S.A., Zheng, X.: Resource bounded randomness and weakly complete problems. Theoret. Comput. Sci. 172(1-2), 195–207 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Balcázar, J., Díaz, J., Gabarró J.: Structural complexity. I. Second edition. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (1995)Google Scholar
  12. 12.
    Balcázar, J.L., Díaz, J., Gabarró, J.: Structural complexity. II. EATCS monographs on theoretical computer science, vol. 22. Springer, Berlin (1990)Google Scholar
  13. 13.
    Buhrman, H., Mayordomo, E.: An excursion to the Kolmogorov random strings. Tenth Annual Conference on Structure in Complexity Theory (Minneapolis, MN. J. Comput. Syst. Sci. 54(3), 393–399 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Geske, J.G., Huỳnh, D.T., Selman, A.L.: A hierarchy theorem for almost everywhere complex sets with application to polynomial complexity degrees. STACS 87 (Passau, 1987), 125–135, Lecture Notes in Comput Sci., 247. Springer, Berlin (1987)Google Scholar
  15. 15.
    Juedes, D.W., Lutz, J.H.: Weak completeness in E and E2. Theoret. Comput. Sci. 143(1), 149–158 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ladner, R.E.: On the structure of polynomial time reducibility. J. Assoc. Comput. Mach. 22, 155–171 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications Graduate texts in computer science. 2nd edn. Springer-Verlag, New York (1997)Google Scholar
  18. 18.
    Lutz, J.H.: Weakly hard problems. SIAM J. Comput. 24(6), 1170–1189 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lutz, J.H., Mayordomo, E.: Measure stochasticity, and the density of hard languages. SIAM J. Comput. 23(4), 762–779 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Watanabe, O.: A comparison of polynomial time completeness notions. Theoret. Comput. Sci. 54(2-3), 249–265 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für InformatikUniversity of HeidelbergHeidelbergGermany
  2. 2.Almaty Management UniversityAlmatyKazakhstan

Personalised recommendations