Advertisement

Theory of Computing Systems

, Volume 63, Issue 8, pp 1781–1818 | Cite as

On Conceptually Simple Algorithms for Variants of Online Bipartite Matching

  • Allan Borodin
  • Denis PankratovEmail author
  • Amirali Salehi-Abari
Article
  • 26 Downloads
Part of the following topical collections:
  1. Special Issue on Approximation and Online Algorithms (2017)

Abstract

We present a series of results regarding conceptually simple algorithms for bipartite matching in various online and related models. We first consider a deterministic adversarial model. The best approximation ratio in this model is 1/2, which is achieved by any greedy algorithm. Dürr et al. (2016) presented a 2-pass algorithm Category-Advice with approximation ratio 3/5. We extend their algorithm to multiple passes. We prove the exact approximation ratio for the k-pass Category-Advice algorithm for all k ≥ 1, and show that the approximation ratio converges quickly to the inverse of the golden ratio \(2/(1+\sqrt {5}) \approx 0.618\) as k goes to infinity. We then consider a natural adaptation of a well-known offline MinGreedy algorithm to the online stochastic IID model, which we call MinDegree. In spite of excellent empirical performance of MinGreedy, it was recently shown to have approximation ratio 1/2 in the adversarial offline setting — the approximation ratio achieved by any greedy algorithm. Our result in the online known IID model is, in spirit, similar to the offline result, but the proof is different. We show that MinDegree cannot achieve an approximation ratio better than 1 − 1/e, which is guaranteed by any consistent greedy algorithm in the known IID model. Finally, following the work in Besser and Poloczek (Algorithmica 2017(1), 201–234, 2017), we depart from an adversarial or stochastic ordering and investigate a natural randomized algorithm (MinRanking) in the priority model. Although the priority model allows the algorithm to choose the input ordering in a general but well defined way, this natural algorithm cannot obtain the approximation of the Ranking algorithm in the ROM model.

Keywords

Conceptually simple algorithms Online algorithms Priority algorithms Bipartite matching Greedy algorithms 

Notes

Acknowledgements

We thank the anonymous reviewers for the conference version of this paper as well as the journal version of this paper. Their detailed and constructive comments helped us to improve the presentation of results in this paper. We also thank Joan Boyar and Kim Larsen, who pointed out a confusing typo in the proof of the positive result for our multi-pass algorithm in an earlier version of the paper.

References

  1. 1.
    Aggarwal, G., Goel, G., Karande, C., Mehta, A.: Online vertex-weighted bipartite matching and single-bid budgeted allocations. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 1253–1264, San Francisco (2011)Google Scholar
  2. 2.
    Angelopoulos, S., Borodin, A.: On the Power of Priority Algorithms for Facility Location and Set Cover. In: Proceedings of APPROX, pp. 26–39 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Angelopoulos, S., Borodin, A.: Randomized priority algorithms. Theor. Comput. Sci. 411(26), 2542–2558 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Aronson, J., Dyer, M., Frieze, A., Suen, S.: Randomized greedy matching. II. Random Struct. Algorithm. 6(1), 55–73 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bahmani, B., Kapralov, M.: Improved Bounds for Online Stochastic Matching. In: Proceedings of ESA, pp. 170–181 (2010)CrossRefGoogle Scholar
  6. 6.
    Besser, B., Poloczek, M.: Erratum to: Greedy matching: guarantees and limitations. Algorithmica, 80, 1–4 (2017)zbMATHCrossRefGoogle Scholar
  7. 7.
    Besser, B., Poloczek, M.: Greedy matching: guarantees and limitations. Algorithmica 77(1), 201–234 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Birnbaum, B., Mathieu, C.: On-line bipartite matching made simple. SIGACT 39(1), 80–87 (2008)CrossRefGoogle Scholar
  9. 9.
    Böckenhauer, H. J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the k-server problem. J. Comput. Syst. Sci. 86, 159–170 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Borodin, A., Boyar, J., Larsen, K.S.: Priority Algorithms for Graph Optimization Problems, pp. 126–139. Springer, Berlin (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    Borodin, A., Ivan, I., Ye, Y., Zimny, B.: On sum coloring and sum multi-coloring for restricted families of graphs. Theor. Comput. Sci. 418, 1–13 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Borodin, A., Karavasilis, C., Pankratov, D.: An Experimental Study of Algorithms for Online Bipartite Matching. ArXiv e-prints (2018)Google Scholar
  13. 13.
    Borodin, A., Nielsen, M.N., Rackoff, C.: (incremental) priority algorithms. Algorithmica 37(4), 295–326 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Boyar, J., Favrholdt, L.M., Kudahl, C., Larsen, K.S., Mikkelsen, J.W.: Online algorithms with advice: A survey. ACM Comput. Surv. 50(2), 19:1–19:34 (2017)zbMATHCrossRefGoogle Scholar
  15. 15.
    Brubach, B., Sankararaman, K.A., Srinivasan, A., Xu, P.: New Algorithms, Better Bounds, and a Novel Model for Online Stochastic Matching. In: Proceedings of ESA, pp. 24:1–24:16 (2016)Google Scholar
  16. 16.
    Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp. 392–403, Arlington (2016)Google Scholar
  17. 17.
    Chandra, B., Halldȯrsson, M. M.: Greedy local improvement and weighted set packing approximation. J. Algorithm. 39(2), 223–240 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Davis, S., Impagliazzo, R.: Models of greedy algorithms for graph problems. Algorithmica 54(3), 269–317 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  20. 20.
    Devanur, N.R., Jain, K., Kleinberg, R.D.: Randomized Primal-Dual Analysis of Ranking for Online Bipartite Matching. In: Proceedings of SODA, pp. 101–107 (2013)Google Scholar
  21. 21.
    Duan, R., Pettie, S.: Linear-time approximation for maximum weight matching. J. ACM 61(1), 1:1–1:23 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Dürr, C., Konrad, C., Renault, M.: On the Power of Advice and Randomization for Online Bipartite Matching. In: Proceedings of ESA, pp. 37:1–37:16 (2016)Google Scholar
  23. 23.
    Eggert, S., Kliemann, L., Munstermann, P., Srivastav, A.: Bipartite matching in the semi-streaming model. Algorithmica 63(1-2), 490–508 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Epstein, L., Levin, A., Mestre, J., Segev, D.: Improved approximation guarantees for weighted matching in the semi-streaming model. SIAM J. Discr. Math. 25(3), 1251–1265 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Epstein, L., Levin, A., Segev, D., Weimann, O.: Improved Bounds for Online Preemptive Matching. In: Proceedings of STACS, pp. 389–399 (2013)Google Scholar
  26. 26.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theor. Comput. Sci. 348(2-3), 207–216 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online Stochastic Matching: Beating 1-1/E. In: Proceedings of FOCS, pp. 117–126 (2009)Google Scholar
  28. 28.
    Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming complexity of maximum bipartite matching. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 468–485, Kyoto (2012)Google Scholar
  29. 29.
    Goel, G., Mehta, A.: Online Budgeted Matching in Random Input Models with Applications to Adwords. In: Proceedings of SODA, pp. 982–991 (2008)Google Scholar
  30. 30.
    Haeupler, B., Mirrokni, V.S., Zadimoghaddam, M.: Online Stochastic Weighted Matching: Improved Approximation Algorithms. In: Proceedings of WINE, pp. 170–181 (2011)Google Scholar
  31. 31.
    Halldȯrsson, M. M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent sets. Theor. Comput. Sci. 289(2), 953–962 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Hosaagrahara, M., Sethu, H.: Degree-sequenced matching algorithms for input-queued switches Telecommunications Systems 34(37), 37–49 (2007)CrossRefGoogle Scholar
  34. 34.
    Jaillet, P., Lu, X.: Online stochastic matching: new algorithms with better bounds. Math. Oper. Res. 39(3), 624–646 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Kapralov, M.: Better Bounds for Matchings in the Streaming Model. In: Proceedings of SODA, pp. 1679–1697 (2013)Google Scholar
  36. 36.
    Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown distributions. In: Proceedings of the 43rd Annual ACM Symposium on Theory Computation (STOC’11), pp. 587–596. ACM, New York (2011)Google Scholar
  37. 37.
    Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An Optimal Algorithm for On-Line Bipartite Matching. In: Proceedings of STOC, pp. 352–358 (1990)Google Scholar
  38. 38.
    Konrad, C., Magniez, F., Mathieu, C.: Maximum Matching in Semi-Streaming with Few Passes. In: Proceedings of APPROX and RANDOM, pp. 231–242 (2012)CrossRefGoogle Scholar
  39. 39.
    Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump markov processes. J. Appl. Probab. 7(1), 49–58 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Lucier, B., Syrgkanis, V.: Greedy Algorithms Make Efficient Mechanisms. In: Proceedings of Conference on Economics and Computation, EC, pp. 221–238 (2015)Google Scholar
  41. 41.
    Madry, A.: Navigating Central Path with Electrical Flows: From Flows to Matchings, and Back. In: Proceedings of FOCS, pp. 253–262 (2013)Google Scholar
  42. 42.
    Madry, A.: Computing Maximum Flow with Augmenting Electrical Flows. In: Proceedings of FOCS), Pp. 593–602 (2016)Google Scholar
  43. 43.
    Magun, J.: Greedy matching algorithms: an experimental study. ACM J. Exper. Algorithm. 3, 6 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Mahdian, M., Yan, Q.: Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs. In: Proceedings of STOC, pp. 597–606 (2011)Google Scholar
  45. 45.
    Manshadi, V.H., Gharan, S.O., Saberi, A.: Online Stochastic Matching: Online Actions Based on Offline Statistics. In: Proceedings of SODA, pp. 1285–1294 (2011)Google Scholar
  46. 46.
    McGregor, A.: Graph Sketching and Streaming: New Approaches for Analyzing Massive Graphs. In: Proceedings of Intern. Comput. Sci. Symp. in Russia, CSR, pp. 20–24 (2017)Google Scholar
  47. 47.
    Mehta, A.: Online matching and ad allocation. Found. Trendsin Theor. Comput. Sci. 8(4), 265–368 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Mikkelsen, J.W.: Randomization Can Be as Helpful as a Glimpse of the Future in Online Computation. In: 43Rd International Colloquium on Automata, Languages, and Programming, ICALP, pp. 39:1–39:14 (2016)Google Scholar
  49. 49.
    Mucha, M., Sankowski, P.: Maximum Matchings via Gaussian Elimination. In: Proceedings of FOCS, pp. 248–255 (2004)Google Scholar
  50. 50.
    Pena, N., Borodin, A.: On the limitations of deterministic de-randomizations for online bipartite matching and max-sat. CoRR arXiv:1608.03182 (2016)
  51. 51.
    Poloczek, M.: Bounds on Greedy Algorithms for MAX SAT, pp. 37–48 (2011)zbMATHCrossRefGoogle Scholar
  52. 52.
    Poloczek, M., Schnitger, G., Williamson, D.P., Zuylen, A.V.: Greedy algorithms for the maximum satisfiability problem: Simple algorithms and inapproximability bounds. SICOMP 46(3), 1029–1061 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Poloczek, M., Szegedy, M.: Randomized Greedy Algorithms for the Maximum Matching Problem with New Analysis. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, pp. 708–717, New Brunswick (2012)Google Scholar
  54. 54.
    Poloczek, M., Williamson, D.P.: An Experimental Evaluation of Fast Approximation Algorithms for the Maximum Satisfiability Problem. In: Proceedings of Intern. Symp. on Experimental Algorithms, SEA, pp. 246–261 (2016)Google Scholar
  55. 55.
    Tinhofer, G.: A probabilistic analysis of some greedy cardinality matching algorithms. Ann. Oper. Res. 1(3), 239–254 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Wormald, N.C.: Differential equations for random processes and random graphs. Ann. Appl. Probab. 5(4), 1217–1235 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Wormald, N.C.: The Differential Equation Method for Random Graph Processes and Greedy Algorithms. In: Lectures on Approximation and Randomized Algorithms, pp. 73–155. PWN, Warsaw (1999)Google Scholar
  58. 58.
    Ye, Y., Borodin, A.: Priority algorithms for the subset-sum problem. J. Comb. Optim. 16(3), 198–228 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TorontoOntarioCanada
  2. 2.Department of Computer Science and Software EngineeringConcordia UniversityMontréalCanada
  3. 3.Faculty of Business and ITUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations