Calcified Tissue International

, Volume 105, Issue 3, pp 308–315 | Cite as

No Signature of Osteocytic Osteolysis in Cortical Bone from Lactating NMRI Mice

  • Nina Kølln Wittig
  • Mie Elholm Birkbak
  • Fiona Linnea Bach-Gansmo
  • Alexandra Pacureanu
  • Mette Høegh Wendelboe
  • Annemarie Brüel
  • Jesper Skovhus Thomsen
  • Henrik BirkedalEmail author
Original Research


The roles of osteocytes in bone homeostasis have garnered increasing attention since it has been realized that osteocytes communicate with other organs. It has long been debated whether and/or to which degree osteocytes can break down the bone matrix surrounding them in a process called osteocytic osteolysis. Osteocytic osteolysis has been indicated to be induced by a number of skeletal challenges including lactation in CD1 and C57BL/6 mice, whereas immobilization-induced osteocytic osteolysis is still a matter of controversy. Motivated by the wish to understand this process better, we studied osteocyte lacunae in lactating NMRI mice, which is a widely used outbred mouse strain. Surprisingly, no trace of osteocytic osteolysis could be detected in tibial or femoral cortical bone either by 3D investigation by synchrotron nanotomography, by studies of lacunar cross-sectional areas using scanning electron microscopy, or by light microscopy. These results lead us to conclude that osteocytic osteolysis does not occur in NMRI mice as a response to lactation, in turn suggesting that osteocytic osteolysis may not play a generic role in mobilizing calcium during lactation.


Cortical bone Osteocyte Lacuno-canalicular network Osteocytic osteolysis Lactation Nanotomography 



The authors are grateful for the excellent technical assistance of Jytte Utoft. We thank Visiopharm for the contribution to the newCAST stereology software system. The study was kindly supported by the A.P. Møller Foundation for Advancement of Medical Science, Health Aarhus University, the Novo Nordisk Foundation, Vanførefonden, Oda og Hans Svennings Fond, the VILLUM foundation (Grant 17553), and the Danish Agency for Science, Technology and Innovation (DANSCATT). Affiliation with the integrated materials research center (iMAT) at Aarhus University is gratefully acknowledged (HB, NKW). The synchrotron tomography experiments were performed on beamline ID16A at the European Synchrotron Radiation Facility (ESRF), Grenoble, France, through long-term proposal MD830. We are grateful to the beamline staff at the ESRF for providing assistance in using beamline ID16A.

Author Contributions

Study design: HB, JST, FBG, AB, MHW. Synchrotron experiments: AP, MEB, NKW, FBG. SEM experiments: NKW, FBG. Optical microscopy: AB. Data analysis: NKW, HB, AB. Data interpretation: NKW, HB, AB. Drafting manuscript: NKW, HB. Revising manuscript content: NKW, HB, JST, AB, FBG. Approving the final version of manuscript: all authors. NKW and HB take responsibility for the integrity of the data analysis.

Compliance with Ethical Standards

Conflict of interest

Nina Kølln Wittig, Mie Elholm Birkbak, Fiona Linnea Bach-Gansmo, Alexandra Pacureanu, Mette Høegh Wendelboe, Annemarie Brüel, Jesper Skovhus Thomsen, and Henrik Birkedal declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The study complied with the guiding principles in the European Communities Council Directive of 24 November 1986 (86/609/EEC) and was approved by the Danish Animal Experiments Inspectorate (2012-15-2934-00769).

Supplementary material

223_2019_569_MOESM1_ESM.docx (308 kb)
Supplementary material 1 (DOCX 307 kb)


  1. 1.
    Belanger LF (1969) Osteocytic osteolysis. Calcif Tissue Res 4(1):1–12CrossRefGoogle Scholar
  2. 2.
    Parfitt AM (1977) The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption–bone flow theory. Clin Orthop Relat Res 127:236–247Google Scholar
  3. 3.
    Teti A, Zallone A (2009) Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44(1):11–16CrossRefGoogle Scholar
  4. 4.
    Alcobendas M, Baud CA, Castanet J (1991) Structural changes of the periosteocytic area in Vipera aspis (L.) (Ophidia, Viperidae) bone tissue in various physiological conditions. Calcif Tissue Int 49(1):53–57CrossRefGoogle Scholar
  5. 5.
    Bach-Gansmo FL et al (2016) Immobilization and long-term recovery results in large changes in bone structure and strength but no corresponding alterations of osteocyte lacunar properties. Bone 91:139–147CrossRefGoogle Scholar
  6. 6.
    Blaber EA et al (2013) Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS ONE 8(4):e61372CrossRefGoogle Scholar
  7. 7.
    Britz HM et al (2012) Prolonged unloading in growing rats reduces cortical osteocyte lacunar density and volume in the distal tibia. Bone 51(5):913–919CrossRefGoogle Scholar
  8. 8.
    Lane NE et al (2006) Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res 21(3):466–476CrossRefGoogle Scholar
  9. 9.
    Qing H et al (2012) Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 27(5):1018–1029CrossRefGoogle Scholar
  10. 10.
    Sano H et al (2015) Intravital bone imaging by two-photon excitation microscopy to identify osteocytic osteolysis in vivo. Bone 74:134–139CrossRefGoogle Scholar
  11. 11.
    Tazawa K et al (2004) Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered. J Bone Miner Metab 22(6):524–529CrossRefGoogle Scholar
  12. 12.
    Kaya S et al (2016) Lactation-induced changes in the volume of osteocyte lacunar-canalicular space alter mechanical properties in cortical bone tissue. J Bone Miner Res 32:688–697CrossRefGoogle Scholar
  13. 13.
    Hemmatian H et al (2018) Mechanical loading differentially affects osteocytes in fibulae from lactating mice compared to osteocytes in virgin mice: possible role for lacuna size. Calcif Tissue Int 103(6):675–685CrossRefGoogle Scholar
  14. 14.
    Jahn K et al (2017) Osteocytes acidify their microenvironment in response to PTHrP in vitro and in lactating mice in vivo. J Bone Miner Res 32(8):1761–1772CrossRefGoogle Scholar
  15. 15.
    Qing H, Bonewald LF (2009) Osteocyte remodeling of the perilacunar and pericanalicular matrix. Int J Oral Sci 1(2):59–65CrossRefGoogle Scholar
  16. 16.
    Tang SY et al (2012) Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res 27(9):1936–1950CrossRefGoogle Scholar
  17. 17.
    Rolvien T et al (2017) Vitamin D regulates osteocyte survival and perilacunar remodeling in human and murine bone. Bone 103:78–87CrossRefGoogle Scholar
  18. 18.
    Clarke MV et al (2015) A role for the calcitonin receptor to limit bone loss during lactation in female mice by inhibiting osteocytic osteolysis. Endocrinology 156(9):3203–3214CrossRefGoogle Scholar
  19. 19.
    Lloyd SA et al (2014) Evidence for the role of connexin 43-mediated intercellular communication in the process of intracortical bone resorption via osteocytic osteolysis. BMC Musculoskelet Disord 15:122CrossRefGoogle Scholar
  20. 20.
    Rodionova NV, Oganov VS, Zolotova NV (2002) Ultrastructural changes in osteocytes in microgravity conditions. Space Life Sci 30(4):765–770Google Scholar
  21. 21.
    Tokarz D et al (2018) hormonal regulation of osteocyte perilacunar and canalicular remodeling in the hyp mouse model of X-linked hypophosphatemia. J Bone Miner Res 33(3):499–509CrossRefGoogle Scholar
  22. 22.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238CrossRefGoogle Scholar
  23. 23.
    Cullinane DM (2002) The role of osteocytes in bone regulation: mineral homeostasis versus mechanoreception. J Musculoskelet Neuronal Interact 2(3):242–244Google Scholar
  24. 24.
    Wysolmerski JJ (2012) Osteocytic osteolysis: time for a second look? Bonekey Rep 1:229CrossRefGoogle Scholar
  25. 25.
    Tsourdi E et al (2018) Physiological and pathological osteocytic osteolysis. J Musculoskelet Neuronal Interact 18(3):292–303Google Scholar
  26. 26.
    Kovacs CS (2016) Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol Rev 96(2):449–547CrossRefGoogle Scholar
  27. 27.
    Liu XS et al (2012) Site-specific changes in bone microarchitecture, mineralization, and stiffness during lactation and after weaning in mice. J Bone Miner Res 27(4):865–875CrossRefGoogle Scholar
  28. 28.
    VanHouten JN (2005) Maternal calcium and bone metabolism during lactation. Curr Opin Endocrinol Diabetes 12(6):477–482CrossRefGoogle Scholar
  29. 29.
    Wendelboe MH et al (2016) Zoledronate prevents lactation induced bone loss and results in additional post-lactation bone mass in mice. Bone 87:27–36CrossRefGoogle Scholar
  30. 30.
    Kovacs CS (2017) The skeleton is a storehouse of mineral that is plundered during lactation and (fully?) Replenished afterwards. J Bone Miner Res 32(4):676–680CrossRefGoogle Scholar
  31. 31.
    Sowers M et al (1995) Biochemical markers of bone turnover in lactating and nonlactating postpartum women. J Clin Endocrinol Metab 80(7):2210–2216Google Scholar
  32. 32.
    VanHouten JN, Wysolmerski JJ (2003) Low estrogen and high parathyroid hormone-related peptide levels contribute to accelerated bone resorption and bone loss in lactating mice. Endocrinology 144(12):5521–5529CrossRefGoogle Scholar
  33. 33.
    Langer M, Peyrin F (2016) 3D X-ray ultra-microscopy of bone tissue. Osteoporos Int 27(2):441–455CrossRefGoogle Scholar
  34. 34.
    Pacureanu A et al (2012) Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup. Med Phys 39(4):2229–2238CrossRefGoogle Scholar
  35. 35.
    Schneider P et al (2010) Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone 47(5):848–858CrossRefGoogle Scholar
  36. 36.
    Goggin PM et al (2016) High-resolution 3D imaging of osteocytes and computational modelling in mechanobiology: insights on bone development, ageing, health and disease. Eur Cell Mater 31:264–295CrossRefGoogle Scholar
  37. 37.
    Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefGoogle Scholar
  38. 38.
    Gundersen HJG (1988) The nucleator. J Microsc Oxf 151:3–21CrossRefGoogle Scholar
  39. 39.
    Cloetens P et al (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X rays. Appl Phys Lett 75(19):2912–2914CrossRefGoogle Scholar
  40. 40.
    Langer M et al (2012) X-ray phase nanotomography resolves the 3D human bone ultrastructure. PLoS ONE 7(8):e35691CrossRefGoogle Scholar
  41. 41.
    Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRefGoogle Scholar
  42. 42.
    Ball GH, Hall DJ (1967) A clustering technique for summarizing multivariate data. Behav Sci 12(2):153CrossRefGoogle Scholar
  43. 43.
    Doube M et al (2010) BoneJ free and extensible bone image analysis in ImageJ. Bone 47(6):1076–1079CrossRefGoogle Scholar
  44. 44.
    Efron B (1987) Better bootstrap confidence-intervals. J Am Stat Assoc 82(397):171–185CrossRefGoogle Scholar
  45. 45.
    Bach-Gansmo FL et al (2015) Osteocyte lacunar properties in rat cortical bone: differences between lamellar and central bone. J Struct Biol 191(1):59–67CrossRefGoogle Scholar
  46. 46.
    Bach-Gansmo FL et al (2013) Calcified cartilage islands in rat cortical bone. Calcif Tissue Int 92(4):330–338CrossRefGoogle Scholar
  47. 47.
    Wittig NK et al (2016) Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone. Bone Rep 4:28–34CrossRefGoogle Scholar
  48. 48.
    Sharma D et al (2012) Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency. Bone 51(3):488–497CrossRefGoogle Scholar
  49. 49.
    Roschger A et al (2019) The contribution of the pericanalicular matrix to mineral content in human osteonal bone. Bone 123:76–85CrossRefGoogle Scholar
  50. 50.
    Hesse B et al (2015) Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT. J Bone Miner Res 30(2):346–356CrossRefGoogle Scholar
  51. 51.
    Klein-Nulend J et al (2013) Mechanosensation and transduction in osteocytes. Bone 54(2):182–190CrossRefGoogle Scholar
  52. 52.
    Schaffler MB et al (2014) Osteocytes: master orchestrators of bone. Calcif Tissue Int 94(1):5–24CrossRefGoogle Scholar
  53. 53.
    Lodberg A et al (2015) Immobilization induced osteopenia is strain specific in mice. Bone Rep 2:59–67CrossRefGoogle Scholar
  54. 54.
    Pataki A et al (1997) Effects of short-term treatment with the bisphosphonates zoledronate and pamidronate on rat bone: a comparative histomorphometric study on the cancellous bone formed before, during, and after treatment. Anat Rec 249(4):458–468CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nina Kølln Wittig
    • 1
  • Mie Elholm Birkbak
    • 1
  • Fiona Linnea Bach-Gansmo
    • 1
  • Alexandra Pacureanu
    • 2
  • Mette Høegh Wendelboe
    • 3
  • Annemarie Brüel
    • 3
  • Jesper Skovhus Thomsen
    • 3
  • Henrik Birkedal
    • 1
    Email author
  1. 1.Department of Chemistry and iNANOAarhus UniversityAarhus CDenmark
  2. 2.European Synchrotron Radiation FacilityGrenoble Cedex 9France
  3. 3.Department of BiomedicineAarhus UniversityAarhus CDenmark

Personalised recommendations