The Response of Osteoblasts and Bone to Sinusoidal Electromagnetic Fields: Insights from the Literature

  • C. GalliEmail author
  • M. Colangelo
  • G. Pedrazzi
  • S. Guizzardi


Electromagnetic fields (EMFs) have been proposed as a tool to ameliorate bone formation and healing. Despite their promising results, however, they have failed to enter routine clinical protocols to treat bone conditions where higher bone mass has to be achieved. This is no doubt also due to a fundamental lack of knowledge and understanding on their effects and the optimal settings for attaining the desired therapeutic effects. This review analysed the available in vitro and in vivo studies that assessed the effects of sinusoidal EMFs (SEMFs) on bone and bone cells, comparing the results and investigating possible mechanisms of action by which SEMFs interact with tissues and cells. The effects of SEMFs on bone have not been as thoroughly investigated as pulsed EMFs; however, abundant evidence shows that SEMFs affect the proliferation and differentiation of osteoblastic cells, acting on multiple cellular mechanisms. SEMFs have also proven to increase bone mass in rodents under normal conditions and in osteoporotic animals.


Electromagnetic fields Osteoblasts Cell differentiation SEMF 


Compliance with Ethical Standards

Conflict of interest

C. Galli, M. Colangelo, G. Pedrazzi and S. Guizzardi have no conflicts of interest to disclose.


  1. 1.
    Henkel J, Woodruff MA, Epari DR et al (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1:216–248. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Minisola S, Cipriani C, Occhiuto M, Pepe J (2017) New anabolic therapies for osteoporosis. Intern Emerg Med 12:915–921. CrossRefPubMedGoogle Scholar
  3. 3.
    Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bilezikian JP, Hattersley G, Fitzpatrick LA et al (2018) Abaloparatide-SC improves trabecular microarchitecture as assessed by trabecular bone score (TBS): a 24-week randomized clinical trial. Osteoporos Int 29:323–328. CrossRefPubMedGoogle Scholar
  5. 5.
    Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543. CrossRefPubMedGoogle Scholar
  6. 6.
    Delgado-Calle J, Sato AY, Bellido T (2017) Role and mechanism of action of sclerostin in bone. Bone 96:29–37. CrossRefPubMedGoogle Scholar
  7. 7.
    Mansour A, Mezour MA, Badran Z, Tamimi F (2017) *Extracellular Matrices for bone regeneration: a literature review. Tissue Eng Part A 23:1436–1451. CrossRefPubMedGoogle Scholar
  8. 8.
    Juignet L, Charbonnier B, Dumas V et al (2017) Macrotopographic closure promotes tissue growth and osteogenesis in vitro. Acta Biomater 53:536–548. CrossRefPubMedGoogle Scholar
  9. 9.
    Kumar A, Placone JK, Engler AJ (2017) Understanding the extracellular forces that determine cell fate and maintenance. Development 144:4261–4270. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Draenert FG, Nonnenmacher A-L, Kämmerer PW et al (2013) BMP-2 and bFGF release and in vitro effect on human osteoblasts after adsorption to bone grafts and biomaterials. Clin Oral Implants Res 24:750–757. CrossRefPubMedGoogle Scholar
  11. 11.
    Iskander MF (2013) Electromagnetic fields and waves. Waveland Press, Long GroveGoogle Scholar
  12. 12.
    Olson P, Amit H (2006) Changes in earth’s dipole. Naturwissenschaften 93:519–542. CrossRefPubMedGoogle Scholar
  13. 13.
    Roberts PH, Glatzmaier GA (2000) Geodynamo theory and simulations. Rev Mod Phys 72:1081–1123. CrossRefGoogle Scholar
  14. 14.
    Birks LE, Struchen B, Eeftens M et al (2018) Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe. Environ Int 117:204–214. CrossRefPubMedGoogle Scholar
  15. 15.
    Squillaro T, Galano G, De Rosa R et al (2018) Concise review: the effect of low-dose ionizing radiation on stem cell biology: a contribution to radiation risk. Stem Cells 36:1146–1153. CrossRefPubMedGoogle Scholar
  16. 16.
    Boice Jr J, Meinhold C, Alexakhin R (2005) Annals of the ICRP Published on behalf of the International Commission on Radiological Protection International Commission on Radiological Protection Members of the Main Commission of the ICRPGoogle Scholar
  17. 17.
    Funk RHW, Monsees T, Özkucur N (2009) Electromagnetic effects—from cell biology to medicine. Prog Histochem Cytochem 43:177–264. CrossRefPubMedGoogle Scholar
  18. 18.
    Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol 109:273–284CrossRefPubMedGoogle Scholar
  19. 19.
    Robinette CD, Silverman C, Jablon S (1980) Effects upon health of occupational exposure to microwave radiation (radar). Am J Epidemiol 112:39–53CrossRefPubMedGoogle Scholar
  20. 20.
    Pall ML (2018) Wi-Fi is an important threat to human health. Environ Res 164:405–416. CrossRefPubMedGoogle Scholar
  21. 21.
    Hug K, Röösli M (2012) Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): a systematic literature review. Bioelectromagnetics 33:95–105. CrossRefPubMedGoogle Scholar
  22. 22.
    Markov MS (2007) Magnetic Field Therapy: a Review. Electromagn Biol Med 26:1–23. CrossRefPubMedGoogle Scholar
  23. 23.
    Markov M (2015) XXIst century magnetotherapy. Electromagn Biol Med 34:190–196. CrossRefPubMedGoogle Scholar
  24. 24.
    Pilla A (2015) Pulsed electromagnetic fields: from signaling to healing. Electromagnetic Fields in biology and medicine. CRC Press, Boca Raton, pp 29–48CrossRefGoogle Scholar
  25. 25.
    Wertheimer N, Leeper E (1982) Adult cancer related to electrical wires near the home. Int J Epidemiol 11:345–355CrossRefPubMedGoogle Scholar
  26. 26.
    Bastuji-Garin S, Richardson S, Zittoun R (1990) Acute leukaemia in workers exposed to electromagnetic fields. Eur J Cancer Clin Oncol 26:1119–1120. CrossRefGoogle Scholar
  27. 27.
    Sermage-Faure C, Demoury C, Rudant J et al (2013) Childhood leukaemia close to high-voltage power lines—the Geocap study, 2002–2007. Br J Cancer 108:1899–1906. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kheifets L, Ahlbom A, Crespi CM et al (2010) Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer 103:1128–1135. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Matanoski G, Breysse P, Elliott E (1991) Electromagnetic field exposure and male breast cancer. Lancet 337:737. CrossRefPubMedGoogle Scholar
  30. 30.
    Cancer IA for R on (2002) Nonionizing radiation, Part 1: static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monogr Eval Carcinog Risks Humans 80:391–395Google Scholar
  31. 31.
    Bua L, Tibaldi E, Falcioni L et al (2018) Results of lifespan exposure to continuous and intermittent extremely low frequency electromagnetic fields (ELFEMF) administered alone to Sprague Dawley rats. Environ Res 164:271–279. CrossRefPubMedGoogle Scholar
  32. 32.
    Qi G, Zuo X, Zhou L et al (2015) Effects of extremely low-frequency electromagnetic fields (ELF-EMF) exposure on B6C3F1 mice. Environ Health Prev Med 20:287–293. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mccormick DL, Boorman GA, Findlay JC et al (1999) Chronic toxicity/oncogenicity evaluation of 60 Hz (power frequency) magnetic fields in B6C3F1 mice. Toxicol Pathol 27:279–285. CrossRefPubMedGoogle Scholar
  34. 34.
    Mihai CT, Rotinberg P, Brinza F, Vochita G (2014) Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells. J Environ Heal Sci Eng 12:15. CrossRefGoogle Scholar
  35. 35.
    Ivancsits S, Diem E, Jahn O, Ruediger HW (2003) Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health 76:431–436. CrossRefPubMedGoogle Scholar
  36. 36.
    Pilla AA (2013) Nonthermal electromagnetic fields: from first messenger to therapeutic applications. Electromagn Biol Med 32:123–136. CrossRefPubMedGoogle Scholar
  37. 37.
    Galli C, Pedrazzi G, Mattioli-Belmonte M, Guizzardi S (2018) The use of pulsed electromagnetic fields to promote bone responses to biomaterials in vitro and in vivo. Int J Biomater 2018:1–15. CrossRefGoogle Scholar
  38. 38.
    Zhou J, Wang J-Q, Ge B-F et al (2014) Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics 35:30–38. CrossRefPubMedGoogle Scholar
  39. 39.
    Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319CrossRefPubMedGoogle Scholar
  40. 40.
    Tsuda E, Goto M, Mochizuki S et al (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234:137–142. CrossRefPubMedGoogle Scholar
  41. 41.
    Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin͞ osteoclastogenesis-inhibitory factor and is identical to TRANCE͞RANKL. Cell Biol 95:3597–3602Google Scholar
  42. 42.
    Martin TJ, Sims NA (2015) RANKL/OPG; Critical role in bone physiology. Rev Endocr Metab Disord 16:131–139. CrossRefPubMedGoogle Scholar
  43. 43.
    Raucci A, Bellosta P, Grassi R et al (2008) Osteoblast proliferation or differentiation is regulated by relative strengths of opposing signaling pathways. J Cell Physiol 215:442–451. CrossRefPubMedGoogle Scholar
  44. 44.
    Yang Y, Tao C, Zhao D et al (2009) EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 31:277–285. CrossRefGoogle Scholar
  45. 45.
    Song M-Y, Yu J-Z, Zhao D-M et al (2014) The time-dependent manner of sinusoidal electromagnetic fields on rat bone marrow mesenchymal stem cells proliferation, differentiation, and mineralization. Cell Biochem Biophys 69:47–54. CrossRefPubMedGoogle Scholar
  46. 46.
    Song M, Zhao D, Wei S et al (2014) The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone. Bioelectromagnetics 35:479–490. CrossRefPubMedGoogle Scholar
  47. 47.
    Yong Y, Ming ZD, Feng L et al (2016) Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J Tissue Eng Regen Med 10:E537–E545. CrossRefPubMedGoogle Scholar
  48. 48.
    Zhu BY, Yang ZD, Chen XR et al (2018) Exposure duration is a determinant of the effect of sinusoidal electromagnetic fields on peak bone mass of young rats. Calcif Tissue Int 103:1–12. CrossRefGoogle Scholar
  49. 49.
    Galli C, Pedrazzi G, Guizzardi S (2019) The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics.
  50. 50.
    Liu C, Yu J, Yang Y et al (2013) Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells. Bioelectromagnetics 34:453–464. CrossRefPubMedGoogle Scholar
  51. 51.
    Sul AR, Park S-N, Suh H (2006) Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med J 47:852–861. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhou J, Wang J, Ge B et al (2012) Effect of 3.6-mT sinusoidal electromagnetic fields on proliferation and differentiation of osteoblasts in vitro. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 34:353–358. CrossRefPubMedGoogle Scholar
  53. 53.
    Yu J, Wu H, Yang Y, et al (2014) Osteogenic differentiation of bone mesenchymal stem cells regulated by osteoblasts under EMF exposure in a co-culture system. J Huazhong Univ Sci Technol [Medical Sci 34:247–253 .
  54. 54.
    Söhl G, Willecke K An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–80Google Scholar
  55. 55.
    Sáez JC, Berthoud VM, Brañes MC et al (2003) Plasma Membrane Channels Formed by Connexins: their Regulation and Functions. Physiol Rev 83:1359–1400. CrossRefPubMedGoogle Scholar
  56. 56.
    Yamaguchi DT, Huang J, Ma D, Wang PKC (2002) Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. J Cell Physiol 190:180–188. CrossRefPubMedGoogle Scholar
  57. 57.
    Lohmann CH, Schwartz Z, Liu Y et al (2003) Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J Orthop Res 21:326–334. CrossRefPubMedGoogle Scholar
  58. 58.
    Ledda M, D’Emilia E, Giuliani L et al (2015) Nonpulsed sinusoidal electromagnetic fields as a noninvasive strategy in bone repair: the effect on human mesenchymal stem cell osteogenic differentiation. Tissue Eng Part C Methods 21:207–217. CrossRefPubMedGoogle Scholar
  59. 59.
    Zhong C, Zhang X, Xu Z, He R (2018) Effects of Low-Intensity Electromagnetic Fields on the Proliferation and Differentiation of Cultured Mouse Bone Marrow Stromal Cells. 92:1208–1219Google Scholar
  60. 60.
    Zhou J, Ming LG, Ge BF et al (2011) Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 49:753–761. CrossRefPubMedGoogle Scholar
  61. 61.
    Yan JL, Zhou J, Ma HP et al (2015) Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol 404:132–140. CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang X, Liu X, Pan L, Lee I (2010) Magnetic fields at extremely low-frequency (50 Hz, 0.8 mT) can induce the uptake of intracellular calcium levels in osteoblasts. Biochem Biophys Res Commun 396:662–666. CrossRefPubMedGoogle Scholar
  63. 63.
    Tong J, Sun L, Zhu B et al (2017) Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients. Bioelectromagnetics 38:541–549. CrossRefPubMedGoogle Scholar
  64. 64.
    Petecchia L, Sbrana F, Utzeri R et al (2015) Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca(2+)-related mechanisms. Sci Rep 5:13856. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    McLaughlin KA, Levin M (2018) Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form. Dev Biol 433:177–189. CrossRefPubMedGoogle Scholar
  66. 66.
    Ross CL, Siriwardane M, Almeida-Porada G et al (2015) The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res 15:96–108. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Panagopoulos DJ, Karabarbounis A, Margaritis LH (2002) Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun 298:95–102. CrossRefPubMedGoogle Scholar
  68. 68.
    Blackman CF, Benane SG, House DE, Joines WT (1985) Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:1–11. CrossRefPubMedGoogle Scholar
  69. 69.
    McLeod BR, Liboff AR (1987) Cyclotron resonance in cell membranes: the theory of the mechanism. mechanistic approaches to interactions of electric and electromagnetic fields with living systems. Springer, US, pp 97–108CrossRefGoogle Scholar
  70. 70.
    Blackman CF, Blanchard JP, Benane SG, House DE (1994) Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics 15:239–260CrossRefPubMedGoogle Scholar
  71. 71.
    Lerchl A, Reiter RJ, Howes KA et al (1991) Evidence that extremely low frequency Ca(2+)-cyclotron resonance depresses pineal melatonin synthesis in vitro. Neurosci Lett 124:213–215CrossRefPubMedGoogle Scholar
  72. 72.
    Bauréus Koch CLM, Sommarin M, Persson BRR et al (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402. CrossRefPubMedGoogle Scholar
  73. 73.
    Blanchard JP, Blackman CF (1994) Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238. CrossRefPubMedGoogle Scholar
  74. 74.
    Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Genestra M (2007) Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 19:1807–1819. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Cadenas S (2018) Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta - Bioenerg 1859:940–950. CrossRefPubMedGoogle Scholar
  77. 77.
    Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Cheng G, Zhai Y, Chen K et al (2011) Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO–cGMP–PKG pathway. Nitric Oxide 25:316–325. CrossRefPubMedGoogle Scholar
  79. 79.
    Patruno A, Amerio P, Pesce M et al (2010) Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Br J Dermatol 162:258–266. CrossRefPubMedGoogle Scholar
  80. 80.
    Schnoke M, Midura RJ (2007) Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res 25:933–940. CrossRefPubMedGoogle Scholar
  81. 81.
    Lin HY, Lin YJ (2011) In vitro effects of low frequency electromagnetic fields on osteoblast proliferation and maturation in an inflammatory environment. Bioelectromagnetics 32:552–560. CrossRefPubMedGoogle Scholar
  82. 82.
    De Mattei M, Gagliano N, Moscheni C et al (2005) Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields. Bioelectromagnetics 26:207–214. CrossRefPubMedGoogle Scholar
  83. 83.
    Ehnert S, Fentz A-K, Schreiner A et al (2017) Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of ·O2− and H2O2. Sci Rep 7:14544. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ehnert S, Falldorf K, Fentz AK et al (2015) Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure—clinical implication possible. Bone Reports 3:48–56. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Diniz P, Soejima K, Ito G (2002) Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide 7:18–23. CrossRefPubMedGoogle Scholar
  86. 86.
    Reale M, De Lutiis MA, Patruno A et al (2006) Modulation of MCP-1 and iNOS by 50-Hz sinusoidal electromagnetic field. Nitric Oxide 15:50–57. CrossRefPubMedGoogle Scholar
  87. 87.
    Chen G, Deng C, Li Y-P (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Fathi E, Farahzadi R (2017) Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/β-catenin signaling pathways. PLoS ONE 12:e0173877. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Bodamyali T, Bhatt B, Hughes FJ et al (1998) Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem Biophys Res Commun 250:458–461. CrossRefPubMedGoogle Scholar
  90. 90.
    Patterson TE, Sakai Y, Grabiner MD et al (2006) Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway. Bioelectromagnetics 27:535–544. CrossRefPubMedGoogle Scholar
  91. 91.
    Selvamurugan N, Kwok S, Vasilov A et al (2007) Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res 25:1213–1220. CrossRefPubMedGoogle Scholar
  92. 92.
    Varani K, Vincenzi F, Ravani A et al (2017) Adenosine receptors as a biological pathway for the anti-inflammatory and beneficial effects of low frequency low energy pulsed electromagnetic fields. Mediators Inflamm 2017:2740963. CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Vincenzi F, Targa M, Corciulo C et al (2013) Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS ONE 8:1–10. CrossRefGoogle Scholar
  94. 94.
    Xie YF, Shi WG, Zhou J et al (2016) Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone 93:22–32. CrossRefPubMedGoogle Scholar
  95. 95.
    Benmerah A (2013) The ciliary pocket. Curr Opin Cell Biol 25:78–84. CrossRefPubMedGoogle Scholar
  96. 96.
    Kaksonen M, Roux A (2018) Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19:313–326. CrossRefPubMedGoogle Scholar
  97. 97.
    Zhou J, Gao Y, Zhu B et al (2019) Sinusoidal electromagnetic fields increase peak bone mass in rats by activating Wnt10b/β=catenin in primary cilia of osteoblasts. J Bone Miner Res 1:1–10. CrossRefGoogle Scholar
  98. 98.
    Satir P, Pedersen LB, Christensen ST (2010) The primary cilium at a glance. J Cell Sci 123:499–503. CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Pedersen LB, Schrøder JM, Satir P, Christensen ST (2012) The ciliary cytoskeleton. Compr Physiol 2:779–803. CrossRefPubMedGoogle Scholar
  100. 100.
    Rattner JB, Sciore P, Ou Y et al (2010) Primary cilia in fibroblast-like type B synoviocytes lie within a cilium pit: a site of endocytosis. Histol Histopathol 25:865–875PubMedGoogle Scholar
  101. 101.
    Molla-Herman A, Ghossoub R, Blisnick T et al (2010) The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 123:1785–1795. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Schneider L, Clement CA, Teilmann SC et al (2005) PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15:1861–1866. CrossRefPubMedGoogle Scholar
  103. 103.
    Clement CA, Ajbro KD, Koefoed K et al (2013) TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep 3:1806–1814. CrossRefPubMedGoogle Scholar
  104. 104.
    Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622. CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Travis AJ, Merdiushev T, Vargas LA et al (2001) Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and guinea pig spermatozoa. Dev Biol 240:599–610. CrossRefPubMedGoogle Scholar
  106. 106.
    Treviño CL, Serrano CJ, Beltrán C et al (2001) Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 509:119–125. CrossRefPubMedGoogle Scholar
  107. 107.
    Schrøder JM, Larsen J, Komarova Y et al (2011) EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms. J Cell Sci 124:2539–2551. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Pedersen LB, Mogensen JB, Christensen ST (2016) Endocytic control of cellular signaling at the primary cilium. Trends Biochem Sci 41:784–797. CrossRefPubMedGoogle Scholar
  109. 109.
    Wang P, Tang C, Wu J et al (2018) Pulsed electromagnetic fields regulate osteocyte apoptosis, RANKL/OPG expression, and its control of osteoclastogenesis depending on the presence of primary cilia. J Cell Physiol Early view. CrossRefGoogle Scholar
  110. 110.
    Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK (2001) Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell 12:589–599. CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127:469–480. CrossRefPubMedGoogle Scholar
  112. 112.
    Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4:68–75CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244. CrossRefGoogle Scholar
  114. 114.
    Glass DA, Bialek P, Ahn JD et al (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764. CrossRefPubMedGoogle Scholar
  115. 115.
    Mao J, Wang J, Liu B et al (2001) Low-density lipoprotein receptor-related protein-5 binds to axin and regulates the canonical wnt signaling pathway. Mol Cell 7:801–809. CrossRefPubMedGoogle Scholar
  116. 116.
    MacDonald BT, He X (2012) Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol 4:1–10. CrossRefGoogle Scholar
  117. 117.
    Gao C, Chen Y-G (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22:717–727. CrossRefPubMedGoogle Scholar
  118. 118.
    MacDonald BT, Tamai K, He X (2009) Wnt/β-Catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Lin CC, Lin RW, Chang CW et al (2015) Single-pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation. Bioelectromagnetics 36:494–505. CrossRefPubMedGoogle Scholar
  120. 120.
    Zhai M, Jing D, Tong S et al (2016) Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/β-catenin signaling-associated mechanism. Bioelectromagnetics 37:152–162. CrossRefPubMedGoogle Scholar
  121. 121.
    Zhou Y, Wang P, Chen H et al (2015) Effect of pulsed electromagnetic fields on osteogenic differentiation and Wnt/β-catenin signaling pathway in rat bone marrow mesenchymal stem cells. Sichuan Da Xue Xue Bao Yi Xue Ban 46:347–353PubMedGoogle Scholar
  122. 122.
    Tucker RW, Pardee A (1979) Centriole Ciliation Is Related to Quiescence and DNA Synthesis in 3T3 Cells. Cell 17:527–535CrossRefPubMedGoogle Scholar
  123. 123.
    Kim S, Tsiokas L (2011) Cilia and cell cycle re-entry: more than a coincidence. Cell Cycle 10:2683–2690. CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Kim S, Lee K, Choi J-H et al (2015) Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun 6:8087. CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Pala R, Alomari N, Nauli S (2017) Primary cilium-dependent signaling mechanisms. Int J Mol Sci 18:2272. CrossRefPubMedCentralGoogle Scholar
  126. 126.
    Delling M, Indzhykulian AA, Liu X et al (2016) Primary cilia are not calcium-responsive mechanosensors. Nature 531:656–660. CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Simons M, Gloy J, Ganner A et al (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537–543. CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Aaron RK, Ciombor DM, Keeping H et al (1999) Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-?1 expression. Bioelectromagnetics 20:453–458.;2-H CrossRefPubMedGoogle Scholar
  129. 129.
    Zhou J, Ma X-N, Gao Y et al (2016) Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissues in vitro. Electromagn Biol Med 35:75–83. CrossRefPubMedGoogle Scholar
  130. 130.
    Zhou J, Wang J, Ma X et al (2013) Effect of sinusoidal electromagnetic fields on rats femur tissue cultivation in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 30:562–566PubMedGoogle Scholar
  131. 131.
    Zhou Y, Li X, Li W, Qin R (2017) Effects of 1.8 mT sinusoidal electromagnetic fields of different frequencies on bone mineral density and bone histomorphometry of young rats. Sheng Wu Gong Cheng Xue Bao 33:1158–1167. CrossRefPubMedGoogle Scholar
  132. 132.
    Gao Y-H, Zhen P, Zhou J et al (2014) Effect of sinusoidal electromagnetic field on bone mineral density and histomorphometry of rats at different time points. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 36:660–667. CrossRefPubMedGoogle Scholar
  133. 133.
    Gao Y, Cheng K, Ge B et al (2015) Effects of 50 Hz sinusoidal electromagnetic field with different intensities on rat peak bone mass. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 32(116–9):136Google Scholar
  134. 134.
    Gao Y, Li S, Zhou Y et al (2016) Screening the optimal time of sinusoidal alternating electromagnetic field for the bone biomechanical properties of rat. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 33:520–525PubMedGoogle Scholar
  135. 135.
    Gao Y, Cheng K, Ge B-F et al (2014) Effect of different-intensity SEMFs on bone mineral density and histomorphometry in SD rats. Zhongguo Gu Shang 27:933–937PubMedGoogle Scholar
  136. 136.
    Gao Y-H, Zhou Y-F, Li S-F et al (2017) Effect of 50 Hz 1.8 mT sinusoidal electromagnetic fields on bone mineral density in growing rats. Zhongguo Gu Shang 30:1113–1117. CrossRefPubMedGoogle Scholar
  137. 137.
    Zhou Y, Gao Y, Zhen P, Chen K (2016) Effects of 1.8 mT sinusoidal alternating electromagnetic fields of different frequencies on bone biomechanics of young rats. Zhejiang Da Xue Xue Bao Yi Xue Ban 45:561–567PubMedGoogle Scholar
  138. 138.
    Khanduja KL, Syal N (2003) Sinusoidal electromagnetic field of SO Hz helps in retaining calcium in tibias of aged rats. Indian J Exp Biol 41:201–204PubMedGoogle Scholar
  139. 139.
    Jing D, Cai J, Wu Y et al (2014) Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats. J Bone Miner Res 29:2250–2261. CrossRefPubMedGoogle Scholar
  140. 140.
    Li B, Bi J, Li W et al (2017) Effects of pulsed electromagnetic fields on histomorphometry and osteocalcin in disuse osteoporosis rats. Technol Heal Care 25:13–20. CrossRefGoogle Scholar
  141. 141.
    Shen W-W, Zhao J-H (2009) Pulsed electromagnetic fields stimulation affects BMD and local factor production of rats with disuse osteoporosis. Bioelectromagnetics 31:113–119. CrossRefGoogle Scholar
  142. 142.
    Jing D, Shen G, Huang J et al (2010) Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. Bone 46:487–495. CrossRefPubMedGoogle Scholar
  143. 143.
    Jiang Y, Gou H, Wang S et al (2016) Effect of pulsed electromagnetic field on bone formation and lipid metabolism of glucocorticoid-induced osteoporosis rats through canonical Wnt signaling pathway. Evid Based Complement Altern Med 2016:4927035. CrossRefGoogle Scholar
  144. 144.
    Zhou J, He H, Yang L et al (2012) Effects of pulsed electromagnetic fields on bone mass and Wnt/β-catenin signaling pathway in ovariectomized rats. Arch Med Res 43:274–282. CrossRefPubMedGoogle Scholar
  145. 145.
    Zhou J, Chen S, Guo H et al (2013) Pulsed electromagnetic field stimulates osteoprotegerin and reduces RANKL expression in ovariectomized rats. Rheumatol Int 33:1135–1141. CrossRefPubMedGoogle Scholar
  146. 146.
    Jing D, Li F, Jiang M et al (2013) Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a Wnt/Lrp5/β-catenin signaling-associated mechanism. PLoS ONE 8:e79377. CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Lei T, Liang Z, Li F et al (2018) Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice. Bone 108:10–19. CrossRefPubMedGoogle Scholar
  148. 148.
    Chang K, Chang WH-S (2003) Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: a prostaglandin E2-associated process. Bioelectromagnetics 24:189–198. CrossRefPubMedGoogle Scholar
  149. 149.
    Bilotta TW, Zati A, Gnudi S et al (1994) Electromagnetic fields in the treatment of postmenopausal osteoporosis: an experimental study conducted by densitometric, dry ash weight and metabolic analysis of bone tissue. Chir Organi Mov 79:309–313PubMedGoogle Scholar
  150. 150.
    Zati A, Gnudi S, Mongiorgi R et al (1993) Effects of pulsed magnetic fields in the therapy of osteoporosis induced by ovariectomy in the rat. Boll Soc Ital Biol Sper 69:469–475PubMedGoogle Scholar
  151. 151.
    Androjna C, Fort B, Zborowski M, Midura RJ (2014) Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics 35:396–405. CrossRefPubMedGoogle Scholar
  152. 152.
    Yang X, He H, Zhou Y et al (2017) Pulsed electromagnetic field at different stages of knee osteoarthritis in rats induced by low-dose monosodium iodoacetate: effect on subchondral trabecular bone microarchitecture and cartilage degradation. Bioelectromagnetics 38:227–238. CrossRefPubMedGoogle Scholar
  153. 153.
    Li J, Zeng Z, Zhao Y et al (2017) Effects of low-intensity pulsed electromagnetic fields on bone microarchitecture, mechanical strength and bone turnover in type 2 diabetic db/db mice. Sci Rep 7:10834. CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Huegel J, Choi DS, Nuss CA et al (2018) Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model. J shoulder Elb Surg 27:553–560. CrossRefGoogle Scholar
  155. 155.
    Taylor KF, Inoue N, Rafiee B et al (2006) Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. J Orthop Res 24:2–10. CrossRefPubMedGoogle Scholar
  156. 156.
    Midura RJ, Ibiwoye MO, Powell KA et al (2005) Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res 23:1035–1046. CrossRefPubMedGoogle Scholar
  157. 157.
    Landry PS, Sadasivan KK, Marino AA, Albright JA (1997) Electromagnetic fields can affect osteogenesis by increasing the rate of differentiation. Clin Orthop Relat Res 338:262–270CrossRefGoogle Scholar
  158. 158.
    Takano-Yamamoto T, Kawakami M, Sakuda M (1992) Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats. J Dent Res 71:1920–1925. CrossRefPubMedGoogle Scholar
  159. 159.
    van der Jagt OP, van der Linden JC, Waarsing JH et al (2012) Systemic treatment with pulsed electromagnetic fields do not affect bone microarchitecture in osteoporotic rats. Int Orthop 36:1501–1506. CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Van Der Jagt OP, Van Der Linden JC, Waarsing JH et al (2014) Electromagnetic fields do not affect bone micro-architecture in osteoporotic rats. Bone Jt Res 33:230–235. CrossRefGoogle Scholar
  161. 161.
    Sert C, Mustafa D, Zahir Düz M et al (2002) The preventive effect on bone loss of 50-Hz, 1-mT electromagnetic field in ovariectomized rats. J Bone Min Metab 20:345–349CrossRefGoogle Scholar
  162. 162.
    Akpolat V, Celik MS, Celik Y et al (2009) Treatment of osteoporosis by long-term magnetic field with extremely low frequency in rats. Gynecol Endocrinol 25:524–529. CrossRefPubMedGoogle Scholar
  163. 163.
    Lei T, Li F, Liang Z et al (2017) Effects of four kinds of electromagnetic fields (EMF) with different frequency spectrum bands on ovariectomized osteoporosis in mice. Sci Rep 7:553. CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Liu C, Zhang Y, Fu T et al (2017) Effects of electromagnetic fields on bone loss in hyperthyroidism rat model. Bioelectromagnetics 38:137–150. CrossRefPubMedGoogle Scholar
  165. 165.
    Canè V, Botti P, Soana S (1993) Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect. J Orthop Res 11:664–670. CrossRefPubMedGoogle Scholar
  166. 166.
    Canè V, Botti P, Farneti D, Soana S (1991) Electromagnetic stimulation of bone repair: a histomorphometric study. J Orthop Res 9:908–917. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine and SurgeryUniversity of ParmaParmaItaly
  2. 2.Department of Medicine and Surgery, Histology and Embryology LabUniversity of ParmaParmaItaly
  3. 3.Department of Medicine and Surgery, Neuroscience UnitUniversity of ParmaParmaItaly

Personalised recommendations