Calcified Tissue International

, Volume 104, Issue 3, pp 301–312 | Cite as

Effect of Adding a Galacto-Oligosaccharides/Fructo-Oligosaccharides (GOS/FOS®) Mixture to a Normal and Low Calcium Diet, on Calcium Absorption and Bone Health in Ovariectomy-Induced Osteopenic Rats

  • Mariana Seijo
  • Gabriel Bryk
  • Magalí Zeni Coronel
  • Marina Bonanno
  • María Esther Río
  • María Luz Pita Martín de Portela
  • Susana Noemí ZeniEmail author
Original Research


Menopause is associated with bone loss. Prebiotics increase Ca, inorganic phosphorus (Pi), and Mg absorption, improving bone health. These increases would supply an extra amount of minerals, decreasing bone resorption and possibly reversing ovariectomy-induced bone loss. The present experimental study sought to evaluate the effect of adding a prebiotic GOS/FOS® mixture to a normal or a low Ca diet on Ca, Pi, and Mg absorption, in osteopenic rats. Four groups of n = 8 rats each were OVX, and 8 rats were SHAM operated. All rats were fed a commercial diet for 45 days. They were then fed one of the following diet for 45 days: C-0.5%: SHAM fed AIN 93 M containing 0.5%Ca; O-0.5% and O-0.3%: OVX rats fed AIN 93 M, containing 0.5% or 0.3%Ca, respectively; GF-0.5% and GF-0.3%: OVX rats fed AIN 93 M, containing 0.5% or 0.3%Ca+ 2.5% GOS/FOS®, respectively. At the end of the experimental time point, Ca, P, and MgAbs% was significantly higher in GF-0.5% and GF-0.3% as compared to the remaining groups (p < 0.01). Irrespective of diet Ca content, CTX decreased whereas femur Ca and P content, tibia BV/TV and GPC.Th, lumbar spine and proximal tibia BMD, bone strength, bone stiffness, and elastic modulus increased in the GF-0.5% and GF-0.3% groups as compared to O-0.5% and O-0.3%, respectively (p < 0.05). This prebiotic mixture would be a useful tool to prevent the increase in bone loss associated with menopause and aging.


Rats Bone loss Prebiotics Calcium absorption and retention 





Simulated operation


Epiphyseal growth plate


Inorganic phosphorus


Calcium intake


Non-digestible fructo-oligosaccharides




Long-chain fructo-oligosaccharides


American Institute of Nutrition


Normal Ca content diet


Low Ca content diet

GF groups

GOS/FOS groups

O groups

Ovariectomized groups


Body weight


Oxygen dioxide




Colony forming units


Food intake




Apparent mineral absorption




Hydrochloric acid


Nitric acid


C-terminal telopeptide of collagen type I


Bone alkaline phosphatase


Total skeleton bone mineral content


Total skeleton bone mineral density


Dual energy X-ray absorptiometry


Coefficients of variation


Region of interest


Ethylene-diamine-tetra-acetic acid


Bone volume fraction


Total width of epiphyseal cartilage



The authors thank technicians Ricardo Orzuza and Julia Somoza for their technical assistance.

Author Contributions

This study is part of the thesis of MS who participated in all stages of the experiment, data entry, and analysis of results. GB performed the biochemical determinations, and MZC participated in the anthropometric and food evaluations. MER and MLPMP participated in the design of the study and in animal and diet control, and SNZ was the director of the investigation.


This study was supported by the University of Buenos Aires and CONICET. This study was funded by UBACyT 20020090200037 and PIP funding programs.

Compliance with Ethical Standards

Conflict of interest

Mariana Seijo, Gabriel Bryk, Magalí Zeni Coronel, Marina Bonanno, María Esther Rio, María Luz Pita Martín de Portela and Susana Noemí Zeni have no conflict of interest to declare.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    de Barboza GD, Guizzardi S, de Talamoni NT (2015) Molecular aspects of intestinal calcium absorption. World J Gastroenterol WJG 21(23):7142CrossRefGoogle Scholar
  2. 2.
    Gallagher JC, Goldgar D, Moy A (1987) Total bone calcium in normal women: effect of age and menopause status. J Bone Miner Res 2(6):491–496CrossRefGoogle Scholar
  3. 3.
    Wronski TJ, Dann LM, Horner SL (1989) Time course of vertebral osteopenia in ovariectomized rats. Bone 10(4):295–301CrossRefGoogle Scholar
  4. 4.
    Bryk G et al (2015) Effect of a combination GOS/FOS® prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats. Eur J Nutr 54(6):913–923CrossRefGoogle Scholar
  5. 5.
    Bryk G et al (2016) Effect of a mixture of GOS/FOS® on calcium absorption and retention during recovery from protein malnutrition: experimental model in growing rats. Eur J Nutr 55(8):2445–2458CrossRefGoogle Scholar
  6. 6.
    Breuil V, Euller-Ziegler L (2004) Nutrition et vieillissement osseux: L’ostéoporose. Nutr Clin Métabol 18(4):212–218CrossRefGoogle Scholar
  7. 7.
    Reid IR, Bristow SM, Bolland MJ (2015) Calcium supplements: benefits and risks. J Intern Med 278(4):354–368CrossRefGoogle Scholar
  8. 8.
    Kopecky SL et al (2016) Lack of evidence linking calcium with or without vitamin D supplementation to cardiovascular disease in generally healthy adults: a clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology. Ann Intern Med 165(12):867–868CrossRefGoogle Scholar
  9. 9.
    Bristow SM et al (2015) Acute effects of calcium citrate with or without a meal, calcium-fortified juice and a dairy product meal on serum calcium and phosphate: a randomised cross-over trial. Br J Nutr 113(10):1585–1594CrossRefGoogle Scholar
  10. 10.
    Manson JE, Bassuk SS (2014) Calcium supplements: do they help or harm? Menopause 21(1):106–108CrossRefGoogle Scholar
  11. 11.
    Reid IR et al (2006) Randomized controlled trial of calcium in healthy older women. Am J Med 119(9):777–785CrossRefGoogle Scholar
  12. 12.
    Coudray C et al (2003) Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr 42(2):91–98CrossRefGoogle Scholar
  13. 13.
    Roberfroid M et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(S2):S1–S63CrossRefGoogle Scholar
  14. 14.
    Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Sapp RE, Davidson SD (1991) Microwave digestion of multi-component foods for sodium analysis by atomic absorption spectrometry. J Food Sci 56(5):1412–1414CrossRefGoogle Scholar
  16. 16.
    Farley JR et al (1994) Quantification of skeletal alkaline phosphatase in osteoporotic serum by wheat germ agglutinin precipitation, heat inactivation, and a two-site immunoradiometric assay. Clin Chem 40(9):1749–1756Google Scholar
  17. 17.
    Zeni S et al (2000) Differences in bone turnover and skeletal response to thyroid hormone treatment between estrogen-depleted and repleted rats. Calcif Tissue Int 67(2):173–177CrossRefGoogle Scholar
  18. 18.
    Mastaglia SR et al (2006) Vitamin D insufficiency reduces the protective effect of bisphosphonate on ovariectomy-induced bone loss in rats. Bone 39(4):837–844CrossRefGoogle Scholar
  19. 19.
    Parfitt AM et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610CrossRefGoogle Scholar
  20. 20.
    Bosello O, Zamboni M (2000) Visceral obesity and metabolic syndrome. Obes Rev 1(1):47–56CrossRefGoogle Scholar
  21. 21.
    Macfarlane S, Macfarlane GT, Cummings JH (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24(5):701–714CrossRefGoogle Scholar
  22. 22.
    Djouzi Z, Andrieux C (1997) Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr 78(2):313–324CrossRefGoogle Scholar
  23. 23.
    Boehm G et al (2003) Prebiotic concept for infant nutrition. Acta Paediatr Oslo Nor 91(441):64–67Google Scholar
  24. 24.
    Scholz-Ahrens KE et al (2007) Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137(3):838S–846SCrossRefGoogle Scholar
  25. 25.
    Roberfroid MB (2002) Functional foods: concepts and application to inulin and oligofructose. Br J Nutr 87(S2):S139–S143CrossRefGoogle Scholar
  26. 26.
    Le Blay G et al (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. J Nutr 129(12):2231–2235CrossRefGoogle Scholar
  27. 27.
    Scholz-Ahrens KE et al (2001) Effects of prebiotics on mineral metabolism. Am J Clin Nutr 73(2):459s–464 sCrossRefGoogle Scholar
  28. 28.
    Scholz-Ahrens KE, Schrezenmeir J (2007) Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr 137(11):;2513S–2523SCrossRefGoogle Scholar
  29. 29.
    Pansu D, Bellaton C, Bronner F (1983) Developmental changes in the mechanisms of duodenal calcium transport in the rat. Am J Physiol 244(1):G20–G26Google Scholar
  30. 30.
    Weisstaub AR et al (2013) Polydextrose enhances calcium absorption and bone retention in ovariectomized rats. Int J Food Sci doi. Google Scholar
  31. 31.
    Taguchi A (1994) Effect of fructooligosaccharides on bone and mineral absorption in the rat model with ovariectomized osteiporosis. Sci Rep 33:37–43Google Scholar
  32. 32.
    Scholz-Ahrens KE, Açil Y, Schrezenmeir J (2002) Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. Br J Nutr 88(4):365–377CrossRefGoogle Scholar
  33. 33.
    Zafar TA et al (2004) Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr 134(2):399–402CrossRefGoogle Scholar
  34. 34.
    Mroczynska M, Libudzisz Z (2010) Beta-glucuronidase and beta-glucosidase activity of Lactobacillus and Enterococcus isolated from human feces. Pol J Microbiol 59(4):265–269Google Scholar
  35. 35.
    Zhu K, Prince RL (2012) Calcium and bone. Clin Biochem 45(12):936–942CrossRefGoogle Scholar
  36. 36.
    Sjögren K et al (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27(6):1357–1367CrossRefGoogle Scholar
  37. 37.
    Raina R et al (2012) Phosphorus metabolism. J Nephrol Ther S. Google Scholar
  38. 38.
    Burr DB, Robling AG, Turner CH (2002) Effects of biomechanical stress on bones in animals. Bone 30(5):781–786CrossRefGoogle Scholar
  39. 39.
    Alfrey AC, Miller NL (1973) Bone magnesium pools in uremia. J Clin Invest 52(12):3019–3027CrossRefGoogle Scholar
  40. 40.
    Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl 1):i3–i14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mariana Seijo
    • 1
  • Gabriel Bryk
    • 1
    • 2
  • Magalí Zeni Coronel
    • 1
  • Marina Bonanno
    • 1
  • María Esther Río
    • 3
  • María Luz Pita Martín de Portela
    • 4
  • Susana Noemí Zeni
    • 1
    • 2
    Email author
  1. 1.Metabolic Bone Diseases Laboratory, Clinical Hospital, Immunology, Genetic and Metabolism Institute (INIGEM)National Council for Scientific and Technologic Research (CONICET), Buenos Aires University (UBA)Buenos AiresArgentina
  2. 2.General and Oral Biochemistry Department, School of DentistryBuenos Aires University (UBA)Buenos AiresArgentina
  3. 3.National Council for Scientific and Technologic Research (CONICET)Buenos AiresArgentina
  4. 4.Food Science and Nutrition Department, School of Pharmacy and BiochemistryBuenos Aires University (UBA)Buenos AiresArgentina

Personalised recommendations