Advertisement

Calcified Tissue International

, Volume 104, Issue 1, pp 42–49 | Cite as

Vitamin D and Bone Mineral Density in HIV Newly Diagnosed Therapy-Naive Patients Without Any Secondary Causes of Osteoporosis

  • María Elena Ceballos
  • Camila Carvajal
  • Javier Jaramillo
  • Angelica Dominguez
  • Gilberto GonzálezEmail author
Original Research
  • 101 Downloads

Abstract

Bone loss and vitamin D deficiency are common in HIV patients. However, bone health status in newly diagnosed HIV patients has not been thoroughly described. Our aim was to assess the bone mineral density (BMD), bone resorption and vitamin D status in newly diagnosed HIV patients. A prospective observational study in HIV newly diagnosed therapy-naive persons. Patients with secondary causes of osteoporosis were excluded. Bone densitometry (DXA), a bone resorption marker (CTx), 25-hydroxyvitamin D (25OHD), CD4 count and HIV viral load (VL) were done in 70 patients. Vitamin D results were compared with a group of healthy volunteers. All patients were men, mean age 31 years (19–50). Low BMD (Z score ≤ 2.0) was found in 13%, all of them in lumbar spine, and in only one patient also in femoral neck. Bone resorption was high in 16%. One out of four participants had low BMD or high bone resorption. Vitamin D deficiency (25OHD < 20 ng/mL) was found in 66%. Mean 25OHD in patients was significantly lower than in healthy volunteers (p = 0.04). No associations were found between BMD, CTx, 25OHD and VL or CD4 count. We hypothesize that HIV infection negatively affects bone health based on the results we found among newly diagnosed, therapy-naive, HIV-infected patients, without any known secondary causes of osteoporosis. Low BMD or high bone resorption, are significantly prevalent in these patients. HIV-infected patients had a higher prevalence of vitamin D deficiency than controls, which was not correlated with CD4 count or VL.

Keywords

HIV/AIDS Bone density Bone mineral density Vitamin D 25OHD 

Notes

Acknowledgements

The authors thank Erin Hamilton MPH., for her contribution in editing and the critical review of this manuscript. “Laboratorio de Infectología y Virología Molecular” of Pontificia Universidad Católica de Chile for helping in the storage of samples. Industry sponsor MSD (Merck Sharp & Dohme) provided funding for biochemical and DXA assays. No funding was given to the authors. The industry had no role in the design and conduct of the study; collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Author Contributions

MEC originally designed, conducted the study and prepared the first draft of the paper. CC contributed to the experimental work. JJ and AD were responsible for statistical analysis of the data. GG helped in the design of the study and made corrections to the paper. He is the guarantor. All authors revised the paper critically for intellectual content and approved the final version. All authors agree to be accountable for the work and to ensure that any questions relating to the accuracy and integrity of the paper are investigated and properly resolved.

Compliance with Ethical Standards

Conflict of interest

María Elena Ceballos, Camila Carvajal, Javier Jaramillo, Angelica Dominguez, and Gilberto González declare that they have no conflicts of interest.

Ethical Approval

All procedures performed in this study were in accordance with the standards of Ethics Review Committee of the School of Medicine of our institution (Pontificia Universidad Católica de Chile) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
  2. 2.
    Compston J (2016) HIV infection and bone disease. J Intern Med 280(4):350–358CrossRefGoogle Scholar
  3. 3.
    Rey D, Treger M, Sibilia J, Priester M, Bernard-Henry C, Cheneau C et al (2015) Bone mineral density changes after 2 years of ARV treatment, compared to naive HIV-1-infected patients not on HAART. Inf Dis 47:88–95CrossRefGoogle Scholar
  4. 4.
    Calmy A, Fux CA, Norris R, Vallier N, Delhumeau C, Samaras K et al (2009) Low bone mineral density, renal dysfunction, and fracture risk in HIV infection: a cross-sectional study. J Infect Dis 200:1746–1754CrossRefGoogle Scholar
  5. 5.
    Triant VA, Brown TT, Lee H, Grinspoon SK (2008) Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab 93:3499–3504CrossRefGoogle Scholar
  6. 6.
    Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, Gulanski B et al (2011) Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS ONE 6(2):e17217CrossRefGoogle Scholar
  7. 7.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930CrossRefGoogle Scholar
  8. 8.
    Gedela K, Edwards SG, Benn P, Grant AD (2014) Prevalence of vitamin D deficiency in HIV positive, antiretroviral treatment-naıve patients in a single centre study. Int J STD AIDS 25(7):488–492CrossRefGoogle Scholar
  9. 9.
    Mueller NJ, Fux CA, Ledergerber B, Elzi L, Schmid P, Dang T et al (2010) High prevalence of severe vitamin D deficiency in combined antiretroviral therapy-naive and successfully treated Swiss HIV patients. AIDS 24(8):1127–1134CrossRefGoogle Scholar
  10. 10.
    Kim JH, Gandhi V, Psevdos G Jr, Espinoza F, Park J, Sharp V (2012) Evaluation of vitamin D levels among HIV infected patients in New York City. AIDS Res Hum Retroviruses 28(3):235–241CrossRefGoogle Scholar
  11. 11.
    Escota Gerome V, Cross Sara PWilliamG (2014) Vitamin D and calcium abnormalities in the HIV-infected population. Endocrinol Metab Clin N Am 43(3):743–767CrossRefGoogle Scholar
  12. 12.
    Ministerio de Salud (2013) Guía Clínica AUGE “Síndrome de la Inmunodeficiencia adquirida VIH/SIDA”, Santiago. http://web.minsal.cl/sites/default/files/files/GPCVIH.pdf. Accessed Sept 2017
  13. 13.
    Garcia M, González G (2012) Diagnóstico y tratamiento de la osteoporosis postmenopáusica. Manual de Endocrinología Clínica. Eds. Eugenio Arteaga, Rene Baudrand. Ed. Mediterraneo, pp. 157–163Google Scholar
  14. 14.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31CrossRefGoogle Scholar
  15. 15.
    Lewiecki EM (2011) In the clinic. Osteoporosis. Ann Intern Med. 155(1):ITC1–I15CrossRefGoogle Scholar
  16. 16.
    Wats N, Bilezikian J, Camacho P, Greenspan S, Harris S, Hodgson S et al (2010) American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Prac 16(Suppl 3):1–37Google Scholar
  17. 17.
    Mazziotti G, Canalis E, Giustina A (2010) Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med 123:877–884CrossRefGoogle Scholar
  18. 18.
    González G, Alvarado JN, Rojas A, Navarrete C, Velásquez CG, Arteaga E (2007) High prevalence of vitamin D deficiency in Chilean healthy postmenopausal women with normal sun exposure: additional evidence for a worldwide concern. Menopause 14:455–461CrossRefGoogle Scholar
  19. 19.
    Figge J, Jabor A, Kazda A, Fencl V (1998) Anion gap and hypoalbuminemia. Crit Care Med 26(11):1807–1810CrossRefGoogle Scholar
  20. 20.
    Valderas J, Velasco S, Solari S, Liberona Y, Viviani P, Maiz A et al (2009) Increase of bone resorption and the parathyroid hormone in postmenopausal women in the long-term after roux-en-Y gastric. Bypass Obes Surg 19:1132–1138CrossRefGoogle Scholar
  21. 21.
    Official Positions 2015 of the International Society for Clinical Densitometry. https://iscd.app.box.com/v/op-iscd-2015-adult. Access May 2017
  22. 22.
    McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P et al (2011) Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis 203:1791–1801CrossRefGoogle Scholar
  23. 23.
    Fernández-Rivera J, García R, Lozano F, Macías J, García-García JA, Mira JA et al (2003) Relationship between low bone mineral density and highly active antiretroviral therapy including protease inhibitors in HIV-infected patients. HIV Clin Trials 4:337–346CrossRefGoogle Scholar
  24. 24.
    Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, Van Wijngaerden E et al (2010) Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis 51(8):963–972CrossRefGoogle Scholar
  25. 25.
    Assoumou L, Katlama C, Viard JP, Bentata M, Simon A, Roux C et al (2013) Changes in bone mineral density over a 2-year period in HIV-1-infected men under combined antiretroviral therapy with osteopenia. AIDS 27(15):2425–2430CrossRefGoogle Scholar
  26. 26.
    Mary-Krause M, Viard JP, Ename-Mkoumazok B, Bentata M, Valantin MA, Missy P et al (2012) Prevalence of low bone mineral density in men and women infected with human immunodeficiency virus 1 and a proposal for screening strategy. J Clin Densitom 15(4):422–433CrossRefGoogle Scholar
  27. 27.
    Cazanave C, Dupon M, Lavignolle-Aurillac V, Barthe N, Lawson-Ayayi S, Mehsen N et al (2008) Reduced bone mineral density in HIV infected patients: prevalence and associated factors. AIDS 22(3):395–402CrossRefGoogle Scholar
  28. 28.
    Benjamin Young CN, Dao K, Buchacz R, Baker JT, Brooks, the HIV Outpatient Study (HOPS) Investigators (2011) Increased rates of bone fracture among hiv-infected persons in the HIV outpatient study (HOPS) compared with the us general population, 2000–2006. Clin Infect Dis 52(8):1061–1068CrossRefGoogle Scholar
  29. 29.
    Gonciulea A, Wang R, Althoff KN, Palella FJ, Lake J, Kingsley LA et al (2017) An increased rate of fracture occurs a decade earlier in HIV+ compared with HIV− men. AIDS 31(10):1435–1443CrossRefGoogle Scholar
  30. 30.
    Masyeni S, Utama S, Somia A, Widiana R, Merati TP (2013) Factors influencing bone mineral density in ARV-naïve patients at Sanglah Hospital, Bali. Acta Med Indonesiana 45(3):175–179Google Scholar
  31. 31.
    Setiyohadi B, Mulansari N, Sukmana N (2009) Reduced bone mineral density and serum C-telopeptide concentration in HIV-infected patients in Cipto Mangunkusumo Hospital. Acta Medica Indonesiana 41(4):191–194Google Scholar
  32. 32.
    Brown T, Chen Y, Currier J, Ribaudo H, Rothenberg J, Dubé M et al (2013)) Body composition, soluble markers of inflammation, and bone mineral density in antiretroviral therapy-naïve HIV-1 infected individuals. J Acquir Immune Defic Syndr 63(3):323–330CrossRefGoogle Scholar
  33. 33.
    Carr A, Grund B, Neuhaus J, Schwartz A, Bernardino JI, White D et al (2015) Prevalence of and risk factors for low bone mineral density in untreated HIV infection: a substudy of the INSIGHT Strategic Timing of Antiretroviral Treatment (START) trial. HIV Med 16(suppl 1):137–146CrossRefGoogle Scholar
  34. 34.
    Overton E, Chan E, Brown T, Tebas P, McComsey G, Melbourne K et al (2015) High-dose vitamin D and calcium attenuates bone loss with antiretroviral therapy initiation. Ann Intern Med 162(12):815–824CrossRefGoogle Scholar
  35. 35.
    Ofotokun I, Titanji K, Lahiri C, Vunnava A, Foster A, Sanford S et al (2016) A single-dose zoledronic acid infusion prevents antiretroviral therapy-induced bone loss in treatment-naïve HIV-infected patients: a phase iib trial. Clin Infect Dis 63(5):663–671CrossRefGoogle Scholar
  36. 36.
    Hofbauer LC, Hamann C, Ebeling PR (2010) Approach to the patient with secondary osteoporosis. Eur J Endocrinol 162:1009–1020CrossRefGoogle Scholar
  37. 37.
    Arora S, Agrawal M, Sun L, Duffoo F, Zaidi M, Iqbal J (2010) HIV and bone loss. Curr Osteoporos Rep 8:219–226CrossRefGoogle Scholar
  38. 38.
    Wohl DA, Orkin C, Doroana M, Pilotto JH, Sungkanuparph S, Yeni P et al (2014) Change in vitamin D levels and risk of severe vitamin D deficiency over 48 weeks among HIV-1-infected, treatment-naive adults receiving rilpivirine or efavirenz in a Phase III trial (ECHO). Antivir Ther 19(2):191–200CrossRefGoogle Scholar
  39. 39.
    Bearden A, Abad C, Gangnon R, Sosman J, Binkley N, Safdar N (2013) Cross-sectional study of vitamin D levels, immunologic and virologic outcomes in HIV-infected adults. J Clin Endocrinol Metab 98(4):1726–1733CrossRefGoogle Scholar
  40. 40.
    Anna K, Coussens CE, Naude R, Goliath G, Chaplin RJ, Wilkinson, Nina G, Jablonski (2015) High-dose vitamin D3 reduces deficiency caused by low UVB exposure and limits HIV-1 replication in urban Southern Africans. Proc Natl Acad Sci USA 112(26):8052–8057CrossRefGoogle Scholar
  41. 41.
    Tubiana VFabre-Mersseman,R, Papagno L, Bayard C, Briceno O, Fastenackels S et al (2014) Vitamin D supplementation is associated with reduced immune activation levels in HIV-1-infected patients on suppressive antiretroviral therapy. AIDS 28:2677–2682CrossRefGoogle Scholar
  42. 42.
    Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. (4):477–501Google Scholar
  43. 43.
    Cervero M, Agud JL, Garcia-Lacalle C, Alcázar V, Torres R, Jusdado JJ et al (2012) Prevalence of vitamin D deficiency and its related risk factor in a Spanish cohort of adult HIV-infected patients: effects of antiretroviral therapy. AIDS Res Hum Retroviruses 28(9):963–971CrossRefGoogle Scholar
  44. 44.
    Ceballos ME, Rojas A, Donato P, Huilcamán M, Rivera G, López T et al (2016) Respuesta virológica e inmunológica a la terapia anti-retroviral en pacientes portadores de infección por VIH atendidos en una red de salud académica de Chile. Rev Chilena Infectol 33(5):531–536CrossRefGoogle Scholar
  45. 45.
    Binkley N, Sempos CT, Vitamin D Standardization Program (VDSP) (2014) Standardizing vitamin D assays: the way forward. J Bone Miner Res 29(8):1709–1714CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • María Elena Ceballos
    • 1
  • Camila Carvajal
    • 1
  • Javier Jaramillo
    • 2
  • Angelica Dominguez
    • 3
  • Gilberto González
    • 2
    Email author
  1. 1.Department of Infectious Diseases, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
  2. 2.Department of Endocrinology, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
  3. 3.Department of Public Health, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations