Advertisement

Calcified Tissue International

, Volume 103, Issue 5, pp 522–528 | Cite as

Vitamin D Intake and Magnetic Resonance Parameters for Knee Osteoarthritis: Data from the Osteoarthritis Initiative

  • Nicola Veronese
  • Luciana La Tegola
  • Maria Mattera
  • Stefania Maggi
  • Giuseppe Guglielmi
Original Research

Abstract

Purpose

There is evidence that vitamin D may play a role in the osteoarthritis (OA) pathogenesis, but the few data available are limited to X-rays and clinical findings. The aim of this study was to investigate whether a higher intake of vitamin D was associated with a better architecture of the cartilage of the knee, assessed with magnetic resonance (MRI), in a large cohort from North America.

Methods

783 participants (59.8% females; mean age: 62.3 years) with an MRI assessment from the Osteoarthritis Initiative were included. Vitamin D dietary intake was calculated as the sum of food and oral supplementation. A coronal 3D FLASH with Water Excitation MR sequence of the right knees was used. The strength of the association between dietary vitamin D intake and knee MRI parameters was investigated through an adjusted linear regression analysis, reported as standardized betas with 95% confidence intervals (CIs).

Results

Using a linear regression analysis, adjusted for ten potential confounders, higher vitamin D intake (reported as an increase in one standard deviation, = 250 IU) corresponded to significantly higher values of mean cartilage thickness and volume of cartilage at medial tibia, volume of cartilage and mean cartilage thickness at central lateral femur, volume of cartilage and mean cartilage thickness at central medial femur, and volume of cartilage and mean cartilage thickness at central medial tibial-femoral compartment.

Conclusions

Higher vitamin D intake is associated with a significantly better architecture of the cartilage of the knee, also independently taking in account from several potential confounders.

Keywords

Knee osteoarthritis Vitamin D Diet MRI Aged Healthy aging Lifestyle 

Notes

Funding

The OAI is a public–private partnership comprising five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily reflect the opinions or views of the OAI investigators, the NIH, or the private funding partners.

Conflict of interest

N. Veronese, L. La Tegola, M. Mattera, S. Maggi and G. Guglielmi declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Supplementary material

223_2018_448_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 KB)

References

  1. 1.
    Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res 28(1):5–15CrossRefGoogle Scholar
  2. 2.
    Weinstein AM et al (2013) Estimating the burden of total knee replacement in the United States. J Bone Joint Surg Am 95(5):385–392CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26(3):355–369CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Laslett LL et al (2014) Moderate vitamin D deficiency is associated with changes in knee and hip pain in older adults: a 5-year longitudinal study. Ann Rheum Dis 73(4):697–703CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Muraki S et al (2011) Association of vitamin D status with knee pain and radiographic knee osteoarthritis. Osteoarthritis Cartilage 19(11):1301–1306CrossRefGoogle Scholar
  6. 6.
    Goula T et al (2015) Vitamin D status in patients with knee or hip osteoarthritis in a Mediterranean country. J Orthop Traumatol 16(1):35–39CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ding C et al (2009) Serum levels of vitamin D, sunlight exposure, and knee cartilage loss in older adults: the Tasmanian older adult cohort study. Arthritis Rheum 60(5):1381–1389CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Veronese N et al. (2015) Serum 25-hydroxyvitamin D and osteoarthritis in older people: the Progetto Veneto Anziani Study. Rejuvenation Res 18(6):543–553CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zhang FF et al (2014) Vitamin D deficiency is associated with progression of knee osteoarthritis. J Nutr 144(12):2002–2008CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Jin X et al (2016) Effect of vitamin d supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: a randomized clinical trial. JAMA 315(10):1005–1013CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cao Y et al (2013) Association between serum levels of 25-hydroxyvitamin D and osteoarthritis: a systematic review. Rheumatology 52(7):1323–1334CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Holick MF (2006) High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81(3):353–373CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bergink AP et al (2016) 25-Hydroxyvitamin D and osteoarthritis: a meta-analysis including new data. Semin Arthritis Rheum 45(5):539–546CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bassiouni H et al (2017) Probing the relation between vitamin D deficiency and progression of medial femoro-tibial osteoarthitis of the knee. Curr Rheumatol Rev 13(1):65–71CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Jin X et al (2017) Associations between endogenous sex hormones and MRI structural changes in patients with symptomatic knee osteoarthritis. Osteoarthritis Cartilage 25(7):1100–1106CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Guermazi A et al (2013) MRI-based semiquantitative scoring of joint pathology in osteoarthritis. Nat Rev Rheumatol 9(4):236–251CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hayashi D, Guermazi A, Roemer FW (2012) MRI of osteoarthritis: the challenges of definition and quantification. Semin Musculoskelet Radiol 16(5):419–430CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Guermazi A et al (2012) Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ 345:e5339CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Felson DT, Nevitt MC (2004) Epidemiologic studies for osteoarthritis: new versus conventional study design approaches. Rheum Dis Clin North Am 30(4):783–797CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Block G, Hartman AM, Naughton D (1990) A reduced dietary questionnaire: development and validation. Epidemiology 1(1):58–64CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Glaser C et al (2001) Optimization and validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness. Magn Reson Imaging 19(2):177–185CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Eckstein F et al (2007) Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. Osteoarthritis Cartilage 15(11):1326–1332CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16(12):1433–1441CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Washburn RA et al (1999) The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol 52(7):643–651CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Katz JN et al (1996) Can comorbidity be measured by questionnaire rather than medical record review? Med Care 34(1):73–84CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Jonckheere AR (1954) A distribution-free k-sample test against ordered alternatives. Biometrika 41(1/2):133–145CrossRefGoogle Scholar
  27. 27.
    Miles J (2009) Tolerance and variance inflation factor. Statistics Reference Online, Wiley StatsRefGoogle Scholar
  28. 28.
    Song H-J, Simon JR, Patel DU (2014) Food preferences of older adults in Senior Nutrition Programs. J Nutr Gerontol Geriatr 33(1):55–67CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lee S et al (2016) Calcium and vitamin D use among older adults in U.S.: results from national survey. J Nutr Health Aging 20(3):300–305CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lawrence RC et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58(1):26–35CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hung A et al (2016) Association of body mass index with incidence and progression of knee effusion on magnetic resonance imaging and on knee examination. Arthritis Care Res 68(4):511–516CrossRefGoogle Scholar
  32. 32.
    Rooney MR et al (2017) Trends in use of high-dose vitamin D supplements exceeding 1000 or 4000 international units daily, 1999–2014. JAMA 317(23):2448–2450CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Palazzo C et al (2016) Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med 59(3):134–138CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Messier SP et al (2013) Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA 310(12):1263–1273CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Demehri S, Hafezi-Nejad N, Carrino JA (2015) Conventional and novel imaging modalities in osteoarthritis: current state of the evidence. Curr Opin Rheumatol 27(3):295–303CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Demehri S, Guermazi A, Kwoh CK (2016) Diagnosis and longitudinal assessment of osteoarthritis: review of available imaging techniques. Rheum Dis Clin North Am 42(4):607–620CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Zheng S et al (2017) Maintaining vitamin D sufficiency is associated with improved structural and symptomatic outcomes in knee osteoarthritis. Am J Med 130(10):1211–1218CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Rainbow R, Ren W, Zeng L (2012) Inflammation and joint tissue interactions in OA: implications for potential therapeutic approaches. Arthritis 2012:741582CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Guillot X et al (2010) Vitamin D and inflammation. Joint Bone Spine 77(6):552–557CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wang Y, Zhu J, DeLuca HF (2014) Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone. J Bone Miner Res 29(3):685–692CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Al-Jarallah KF et al (2012) Are 25(OH)D levels related to the severity of knee osteoarthritis and function? Med Princ Pract 21(1):74–78CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mabey T, Honsawek S (2015) Role of vitamin D in osteoarthritis: molecular, cellular, and clinical perspectives. Int J Endocrinol.  https://doi.org/10.1155/2015/383918 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research CouncilNeuroscience Institute, Aging BranchPaduaItaly
  2. 2.Department of RadiologyUniversità degli Studi di Foggia Scuole di Specializzazione di Area MedicaFoggia, PugliaItaly
  3. 3.Department of RadiologyScientific Institute “Casa Sollievo della Sofferenza” HospitalSan Giovanni RotondoItaly

Personalised recommendations