Advertisement

Calcified Tissue International

, Volume 90, Issue 6, pp 439–449 | Cite as

Recent Advances in Osteogenesis Imperfecta

  • Tim Cundy
Review

Abstract

“Osteogenesis imperfecta” is a term used to describe a group of genetic disorders of variable phenotype usually defined by recurrent fractures, low bone mass, and skeletal fragility. Most cases are associated with mutations in one of the type I collagen genes, but in recent years several other forms have been identified with recessive inheritance. In most instances the latter result from mutations in genes encoding proteins involved in type I collagen’s complex posttranslational modification or in genes regulating bone matrix homeostasis. This article reviews the recent discoveries and an approach to classification and diagnosis. Bisphosphonates are widely used in patients with osteogenesis imperfecta, but some important questions about their optimal usage, their utility in children and adults with milder phenotypes, and their potential adverse effects are not yet resolved.

Keywords

Bisphosphonate Matrix protein Osteogenesis imperfecta Pediatric bone disease Type I collagen 

Notes

Acknowledgement

My sincere thanks go to Dr. Peter Byers, University of Washington, for his great help in preparing this article and for providing Fig. 2. The radiographs and the histology in Fig. 3 are reproduced with kind permission of Dr. Paul Hofman and Dr. Michael Dray, respectively.

References

  1. 1.
    Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28:209–221PubMedCrossRefGoogle Scholar
  2. 2.
    Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353PubMedCrossRefGoogle Scholar
  3. 3.
    Krane SM (2008) The importance of proline residues in the structure, stability and susceptibility to proteolytic degradations of collagens. Amino Acids 35:703–710PubMedCrossRefGoogle Scholar
  4. 4.
    Sillence DO, Senn A, Danks DM (1979) Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16:101–116PubMedCrossRefGoogle Scholar
  5. 5.
    Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet 155A:943–968PubMedCrossRefGoogle Scholar
  6. 6.
    Cundy T, Horne A, Bolland M, Gamble G, Davidson J (2007) Bone formation markers in adults with mild osteogenesis imperfecta. Clin Chem 53:1109–1114PubMedCrossRefGoogle Scholar
  7. 7.
    Rauch F, Lalic L, Roughley P, Glorieux FH (2010) Genotype–phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur J Hum Genet 18:642–647PubMedCrossRefGoogle Scholar
  8. 8.
    Rauch F, Lalic L, Roughley P, Glorieux FH (2010) Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J Bone Miner Res 25:1367–1374PubMedGoogle Scholar
  9. 9.
    Semler O, Cheung MS, Glorieux FH, Rauch F (2010) Wormian bones in osteogenesis imperfecta: correlation to clinical findings and genotype. Am J Med Genet A 152:1681–1687Google Scholar
  10. 10.
    Cheung MS, Arponen H, Roughley P, Azouz ME, Glorieux FH, Waltimo-Siren J, Rauch F (2011) Cranial base abnormalities in osteogenesis imperfecta: phenotypic and genotypic determinants. J Bone Miner Res 26:405–413PubMedCrossRefGoogle Scholar
  11. 11.
    Faqeih E, Roughley P, Glorieux FH, Rauch F (2009) Osteogenesis imperfecta type III with intracranial hemorrhage and brachydactyly associated with mutations in exon 49 of COL1A2. Am J Med Genet A 149:461–465Google Scholar
  12. 12.
    Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan TE, Makareeva E, Brusel M, Yaszemski MJ, Rubin CJ, Kindmark A, Roschger P, Klaushofer K, McAlister WH, Mumm S, Leikin S, Kessler E, Boskey AL, Ljunggren O, Marini JC (2011) COL1A1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat 32:598–609PubMedCrossRefGoogle Scholar
  13. 13.
    Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P, Lalic L, Glorieux DF, Fassier F, Bishop NJ (2000) Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 15:1650–1658PubMedCrossRefGoogle Scholar
  14. 14.
    Cheung MS, Glorieux FH, Rauch F (2007) Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res 22:1181–1186PubMedCrossRefGoogle Scholar
  15. 15.
    Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304PubMedCrossRefGoogle Scholar
  16. 16.
    Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft CJ, Bulas DI, Kozma C, Smith PA, Eyre DR, Marini JC (2007) Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 39:359–365PubMedCrossRefGoogle Scholar
  17. 17.
    Baldridge D, Schwarze U, Morello R, Lennington J, Bertin TK, Pace JM, Pepin MG, Weis M, Eyre DR, Walsh J, Lambert D, Green A, Robinson H, Michelson M, Houge G, Lindman C, Martin J, Ward J, Lemyre E, Mitchell JJ, Krakow D, Rimoin DL, Cohn DH, Byers PH, Lee B (2008) CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta. Hum Mutation 29:1435–1442CrossRefGoogle Scholar
  18. 18.
    Barnes AM, Carter EM, Cabral WA, Weis M, Chang W, Makareeva E, Leikin S, Rotimi CN, Eyre DR, Raggio CL, Marini JC (2010) Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N Engl J Med 362:521–528PubMedCrossRefGoogle Scholar
  19. 19.
    Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, Alikasifoglu M, Tuncbilek E, Orhan D, Bakar FT, Zabel B, Superti-Furga A, Bruckner-Tuderman L, Curry CJ, Pyott S, Byers PH, Eyre DR, Baldridge D, Lee B, Merrill AE, Davis EC, Cohn DH, Akarsu N, Krakow D (2010) Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 87:551–559CrossRefGoogle Scholar
  20. 20.
    Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, Willaert A, Elcioglu N, Van Maldergem L, Verellen-Dumoulin C, Gillerot Y, Napierala D, Krakow D, Beighton P, Superti-Furga A, De Paepe A, Lee B (2011) Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res 26:666–672PubMedCrossRefGoogle Scholar
  21. 21.
    Schwarze U, Cundy T, Pyott S, Christiansen H, Hegde MR, Bank R, Pals G, Ankala A, Connelly K, Seaver L, Yandow S, Raney H, Babovich-Vicsanovic D, Stoler J, Ben-Neriah Z, Segal R, Al-Aqeel A, Siderius L, Hannibal M, Hudgins L, McPherson E, Clemens M, Sussman MD, Steiner R, Mahan J, Smith R, Anyane-Yeboa K, Chong K, Uster T, Aftimos S, Sutton VR, Davis EC, Weis MA, Eyre D, Byers PH (2012) Mutation in FKBP10, which encodes a 65kD FK506 binding prolyl cis-trans isomerase, results in recessive forms of osteogenesis imperfecta and is the first Bruck syndrome (contractures and fractures) locus. Submitted for publicationGoogle Scholar
  22. 22.
    Van der Slot AJ, Zuurmond A-M, Bardoe AFJ, Wijmenga C, Pruijs HEH, Sillence DO, Brinckmann J, Abraham DJ, Black CM, Verzijl N, DeGroot J, Hanemaaijer R, TeKoppele JM, Huizinga TWJ, Bank RA (2003) Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J Biol Chem 278:40967–40972PubMedCrossRefGoogle Scholar
  23. 23.
    Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398PubMedCrossRefGoogle Scholar
  24. 24.
    Martinez-Glez V, Valencia M, Caparros-Martin JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, Giunta C, Lapunzina P, Ruiz-Perez VL (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33:343–350PubMedCrossRefGoogle Scholar
  25. 25.
    Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371PubMedCrossRefGoogle Scholar
  26. 26.
    Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, Bertin T, Napierala D, Morello R, Gibbs R, White L, Miki R, Cohn DH, Crawford S, Travers R, Glorieux FH, Lee B (2011) Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res 26:2798–2803PubMedCrossRefGoogle Scholar
  27. 27.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman–Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, Lacombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML (2001) LDL receptor–related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523PubMedCrossRefGoogle Scholar
  28. 28.
    Ai M, Heeger S, Bartels CF, Schelling DK, Osteoporosis-Pseudoglioma Collaborative Group (2005) Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am J Hum Genet 77:741–753PubMedCrossRefGoogle Scholar
  29. 29.
    Lapunzina P, Aglan M, Temtamy S, Caparros-Martin JA, Valencia M, Leton R, Martinez-Glez V, Elhossini R, Amr K, Vilaboa N, Ruiz-Perez VL (2010) Identification of a frameshift mutation in osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87:110–114PubMedCrossRefGoogle Scholar
  30. 30.
    Paterson CR, Ogston SA, Henry RM (1996) Life expectancy in osteogenesis imperfecta. BMJ 1996:312–351Google Scholar
  31. 31.
    Paterson CR, McAllion S, Stellman JL (1984) Osteogenesis imperfecta after the menopause. N Engl J Med 310:1694–1696PubMedCrossRefGoogle Scholar
  32. 32.
    Paterson CR, Monk EA, McAllion SJ (2001) How common is hearing impairment in osteogenesis imperfecta? J Laryngol Otol 115:280–282PubMedCrossRefGoogle Scholar
  33. 33.
    Bonita RE, Cohen IS, Berko BA (2010) Valvular heart disease in osteogenesis imperfecta: presentation of a case and review of the literature. Echocardiography 27:69–73PubMedCrossRefGoogle Scholar
  34. 34.
    Adami S, Gatti D, Colapietro F, Fracassi E, Braga V, Rossini M, Tato L (2003) Intravenous neridronate in adults with osteogenesis imperfecta. J Bone Miner Res 18:126–130PubMedCrossRefGoogle Scholar
  35. 35.
    Chevrel G, Schott A-M, Fontanges E, Charrin JE, Lina-Granade G, Duboeuf F, Garnero P, Arlot M, Raynal C, Meunier PJ (2006) Effects of oral alendronate on BMD in adult patients with osteogenesis imperfecta: a 3-year randomized placebo-controlled trial. J Bone Miner Res 21:300–306PubMedCrossRefGoogle Scholar
  36. 36.
    Bradbury LA, Barlow S, Geoghegan F, Hannon RA, Stuckey SL, Wass JAH, Russell RGG, Brown MA, Duncan EL (2012) Risedronate in adults with osteogenesis imperfecta type I: increased bone mineral density and decreased bone turnover, but high fracture rate persists. Osteoporos Int 23:285–294PubMedCrossRefGoogle Scholar
  37. 37.
    Devogelaer JP, Malghem J, Maldague B, Nagant de Deuxchaines C (1987) Radiological manifestations of bisphosphonate treatment with APD in a child suffering from osteogenesis imperfecta. Skel Radiol 16:360–363CrossRefGoogle Scholar
  38. 38.
    Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385PubMedCrossRefGoogle Scholar
  39. 39.
    Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2011) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res 26:12–18PubMedCrossRefGoogle Scholar
  40. 40.
    Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F (2008) Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int 82:263–270PubMedCrossRefGoogle Scholar
  41. 41.
    Land C, Rauch F, Glorieux FH (2006) Cyclical intravenous pamidronate treatment affects metaphyseal modeling in growing patients with osteogenesis imperfecta. J Bone Miner Res 21:374–379PubMedCrossRefGoogle Scholar
  42. 42.
    Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH (2004) Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res 19:1779–1786PubMedCrossRefGoogle Scholar
  43. 43.
    Rauch F, Munns CF, Land C, Cheung M, Glorieux FH (2009) Risedronate in the treatment of mild pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Bone Miner Res 24:1282–1289PubMedCrossRefGoogle Scholar
  44. 44.
    Ward LM, Rauch F, Whyte MP, D’Astous J, Gates PE, Grogan D, Lester EL, McCall RE, Pressly TA, Sanders JO, Smith PA, Steiner RD, Sullivan E, Tyerman G, Smith-Wright DL, Verbruggen N, Heyden N, Lombardi A, Glorieux FH (2011) Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab 96:355–364PubMedCrossRefGoogle Scholar
  45. 45.
    Bishop N, Harrison R, Ahmed F, Shaw N, Eastell R, Campbell M, Knowles E, Hill C, Hall C, Chapman S, Sprigg A, Rigby A (2010) A randomized, controlled dose-ranging study of risedronate in children with moderate and severe osteogenesis imperfecta. J Bone Miner Res 25:32–40PubMedCrossRefGoogle Scholar
  46. 46.
    Antoniazzi F, Monti E, Venturi G, Franceschi R, Doro F, Gatti D, Zamboni G, Tato L (2010) Growth hormone in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur J Endocrinol 163:479–487PubMedCrossRefGoogle Scholar
  47. 47.
    Rauch F, Cornibert S, Cheung M, Glorieux FH (2007) Long-bone changes after pamidronate discontinuation in children and adolescents with osteogenesis imperfecta. Bone 40:821–827PubMedCrossRefGoogle Scholar
  48. 48.
    Cheung MS, Glorieux FH, Rauch F (2009) Large osteoclasts in pediatric osteogenesis imperfecta patients receiving intravenous pamidronate. J Bone Miner Res 24:669–674PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medicine, Faculty of Medical & Health SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations