Cluster exchange groupoids and framed quadratic differentials

  • Alastair King
  • Yu QiuEmail author


We introduce the cluster exchange groupoid associated to a non-degenerate quiver with potential, as an enhancement of the cluster exchange graph. In the case that arises from an (unpunctured) marked surface, where the exchange graph is modelled on the graph of triangulations of the marked surface, we show that the universal cover of this groupoid can be constructed using the covering graph of triangulations of the surface with extra decorations. This covering graph is a skeleton for a space of suitably framed quadratic differentials on the surface, which in turn models the space of Bridgeland stability conditions for the 3-Calabi–Yau category associated to the marked surface. By showing that the relations in the covering groupoid are homotopically trivial when interpreted as loops in the space of stability conditions, we show that this space is simply connected.



QY would like to thank Aslak Buan and Yu Zhou for collaborating on the prequels to this paper. He is also grateful to Tom Bridgeland and Ivan Smith for inspiring discussions. This work is supported by Hong Kong RGC 14300817 (from Chinese University of Hong Kong) and Beijing Natural Science Foundation (Z180003).


  1. 1.
    Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential Ann. Inst. Fourier 59, 2525–2590 (2009). arXiv:0805.1035 MathSciNetCrossRefGoogle Scholar
  2. 2.
    August, J., Wemyss, M.: Stability on contraction algebras implies \(K(\pi ,1)\). arXiv:1907.12756
  3. 3.
    Boissy, C.: Connected components of the moduli space of meromorphic differentials. Comment. Math. Helv. 90, 255–286 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. 166, 317–345 (2007). (arXiv:math/0212237)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bridgeland, T., Smith, I.: Quadratic differentials as stability conditions. Publ. Math. de l’IHÉS 121, 155–278 (2015). (arXiv:1302.7030)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brüstle, T., Zhang, J.: On the cluster category of a marked surface without punctures. Algebra Number Theory 5, 529–566 (2011). arXiv:1005.2422 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Buan, A.B., Iyama, O., Reiten, I., Smith, D.: Mutation of cluster tilting objects and potentials. Am. J. Math. 133, 835–887 (2011). (arXiv:0804.3813)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Buan, A.B., Qiu, Y., Zhou, Y.: Decorated marked surfaces III: The derived category of a decorated marked surface Int. Math. Res. Not. (to appear). arXiv:1804.00094
  9. 9.
    Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations I: mutations. Selecta Mathematica 14, 59–119 (2008). (arXiv:0704.0649)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton University Press, Princeton (2012)zbMATHGoogle Scholar
  11. 11.
    Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces, part I: cluster complexes. Acta Math. 201, 83–146 (2008). (arXiv:math/0608367)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002). (arXiv:math/0104151)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guaschi, J., Juan-Pineda, D.: A survey of surface braid groups and the lower algebraic K-theory of their group rings in “Handbook of Group actions, Vol. II”, pp. 23–75. Adv. Lect. in Math. 32, Int. Press, Boston (2015). arXiv:1302.6536
  14. 14.
    Higgins, P.: Categories and groupoids. Repr. Theory Appl. Categ. 7, 1–195 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Haiden, F., Katzarkov, L., Kontsevich, M.: Stability in Fukaya categories of surfaces. Publ. Math. de l’IHÉS 126, 247–318 (2017). (arXiv:1409.8611)CrossRefGoogle Scholar
  16. 16.
    Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math. 172, 117–168 (2008). (arXiv:math/0607736)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Keller, B.: On cluster theory and quantum dilogarithm identities. EMS Series of Congress Reports , pp. 85–116 (2011). arXiv:1102.4148
  18. 18.
    Keller, B.: Cluster algebras and derived categories. EMS Series of Congress Reports, pp. 123–183 (2012). arXiv:1202.4161
  19. 19.
    Keller, B., Yang, D.: Derived equivalences from mutations of quivers with potential. Adv. Math. 226, 2118–2168 (2011). (arXiv:0906.0761)MathSciNetCrossRefGoogle Scholar
  20. 20.
    King, A., Qiu, Y.: Exchange graphs and Ext quivers. Adv. Math. 285, 1106–1154 (2015). (arXiv:1109.2924)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kontsevich, M., Zorich, A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math. 153, 631–678 (2003). (arXiv:math/0201292)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Krammer, D.: A class of Garside groupoid structures on the pure braid group. Trans. Am. Math. Soc. 360, 4029–4061 (2008). (arXiv:math/0509165)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Labardini-Fragoso, D.: Quivers with potentials associated to triangulated surfaces. Proc. Lond. Math. Soc. 98, 797–839 (2009). (arXiv:0803.1328)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pauksztello, D., Saorn, M., Zvonareva, A.: Contractibility of the stability manifold for silting-discrete algebras. arXiv:1705.10604
  25. 25.
    Plamondon, P.-G.: Cluster algebras via cluster categories with infinite-dimensional morphism spaces. Compos. Math. 147, 1921–1954 (2011). (arXiv:1004.0830)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Qiu, Y.: Stability conditions and quantum dilogarithm identities for Dynkin quivers. Adv. Math. 269, 220–264 (2015). (arXiv:1111.1010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Qiu, Y.: Decorated marked surfaces: spherical twists versus braid twists. Math. Ann. 365, 595–633 (2016). (arXiv:1407.0806)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Qiu, Y.: Decorated marked surfaces (part B): topological realizations. Math. Z. 288, 39–53 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Qiu, Y.: The braid group for a quiver with superpotential. Sci. China Math. 62, 1241–1256 (2019). (arXiv:1712.09585)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Qiu, Y., Woolf, J.: Contractible stability spaces and faithful braid group actions. Geom. Topol. 22, 3701–3760 (2018). (arXiv:1407.5986)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Qiu, Y., Zhou, Y.: Decorated marked surfaces II: intersection numbers and dimensions of Homs. Trans. Am. Math. Soc. 372, 635–660 (2019). (arXiv:1411.4003)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Qiu, Y., Zhou, Y.: Finite presentations for spherical/braid twist groups from decorated marked surfaces. arXiv:1703.10053
  33. 33.
    Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108, 37–108 (2001). (arXiv:math/0001043)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematical SciencesUniversity of BathBathUK
  2. 2.Yau Mathematical Sciences CenterTsinghua UniversityBeijingChina

Personalised recommendations