Fourier uniformity of bounded multiplicative functions in short intervals on average
Article
First Online:
- 251 Downloads
Abstract
Let \(\lambda \) denote the Liouville function. We show that as \(X \rightarrow \infty \), for all \(H \ge X^{\theta }\) with \(\theta > 0\) fixed but arbitrarily small. Previously, this was only known for \(\theta > 5/8\). For smaller values of \(\theta \) this is the first “non-trivial” case of local Fourier uniformity on average at this scale. We also obtain the analogous statement for (non-pretentious) 1-bounded multiplicative functions. We illustrate the strength of the result by obtaining cancellations in the sum of \(\lambda (n) \Lambda (n + h) \Lambda (n + 2h)\) over the ranges \(h < X^{\theta }\) and \(n < X\), and where \(\Lambda \) is the von Mangoldt function.
$$\begin{aligned} \int _{X}^{2X} \sup _{\alpha } \left| \sum _{x < n \le x + H} \lambda (n) e(-\alpha n) \right| dx = o ( X H) \end{aligned}$$
Notes
Acknowledgements
KM was supported by Academy of Finland Grant No. 285894. MR was supported by an NSERC DG grant, the CRC program and a Sloan Fellowship. TT was supported by a Simons Investigator Grant, the James and Carol Collins Chair, the Mathematical Analysis & Application Research Fund Endowment, and by NSF Grant DMS-1266164. Part of this paper was written while the authors were in residence at MSRI in Spring 2017, which is supported by NSF Grant DMS-1440140.
References
- 1.Balog, A.: The prime \(k\)-tuplets conjecture on average (Allerton Park, IL, 1989). Analytic Number Theory. Progress in Mathematics, vol. 85, pp. 47–75. Birkhäuser, Boston (1990)CrossRefGoogle Scholar
- 2.Blakley, G.R., Roy, P.: A Hölder type inequality for symmetric matrices with nonnegative entries. Proc. Am. Math. Soc. 16, 1244–1245 (1965)zbMATHGoogle Scholar
- 3.Blomer, V.: On triple correlations of divisor functions. Bull. Lond. Math. Soc. 49(1), 10–22 (2017)MathSciNetCrossRefGoogle Scholar
- 4.Chowla, S.: The Riemann Hypothesis and Hilbert’s Tenth Problem. Mathematics and Its Applications, vol. 4. Gordon and Breach Science Publishers, New York (1965)zbMATHGoogle Scholar
- 5.Davenport, H.: On some infinite series involving arithmetical functions. II. Q. J. Math. Oxf. 8, 313–320 (1937)CrossRefGoogle Scholar
- 6.Elliott, P.D.T.A.: Probabilistic Number Theory I. Mean-Value Theorems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 239. Springer, New York (1979)zbMATHGoogle Scholar
- 7.Frantzikinakis, N., Host, B.: Asymptotics for multilinear averages of multiplicative functions. Math. Proc. Camb. Philos. Soc. 161(1), 87–101 (2016)MathSciNetCrossRefGoogle Scholar
- 8.Gowers, W.T.: A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8(3), 529–551 (1998)MathSciNetCrossRefGoogle Scholar
- 9.Granville, A., Soundararajan, K.: Large character sums: pretentious characters and the Pólya–Vinogradov theorem. J. Am. Math. Soc. 20(2), 357–384 (2007)CrossRefGoogle Scholar
- 10.Green, B., Tao, T.: Restriction theory of the Selberg sieve, with applications. J. Théor. Nombres Bordx. 18(1), 147–182 (2006)MathSciNetCrossRefGoogle Scholar
- 11.Green, B., Tao, T.: Quadratic uniformity of the Möbius function. Ann. Inst. Fourier (Grenoble) 58(6), 1863–1935 (2008)MathSciNetCrossRefGoogle Scholar
- 12.Green, B., Tao, T.: Linear equations in primes. Ann. Math. (2) 171(3), 1753–1850 (2010)MathSciNetCrossRefGoogle Scholar
- 13.Green, B., Tao, T.: The Möbius function is strongly orthogonal to nilsequences. Ann. Math. (2) 175(2), 541–566 (2012)MathSciNetCrossRefGoogle Scholar
- 14.Green, B., Tao, T.: The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. Math. (2) 175(2), 465–540 (2012)MathSciNetCrossRefGoogle Scholar
- 15.Heath-Brown, D.R.: The number of primes in a short interval. J. Reine Angew. Math. 389, 22–63 (1988)MathSciNetzbMATHGoogle Scholar
- 16.Huxley, M.N.: On the difference between consecutive primes. Invent. Math. 15, 164–170 (1972)MathSciNetCrossRefGoogle Scholar
- 17.Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)zbMATHGoogle Scholar
- 18.Kawada, K.: The prime \(k\)-tuplets in arithmetic progressions. Tsukuba J. Math. 17(1), 43–57 (1993)MathSciNetCrossRefGoogle Scholar
- 19.Kawada, K.: A Montgomery–Hooley type theorem for prime \(k\)-tuplets. Acta Math. Hung. 66(3), 177–200 (1995)MathSciNetCrossRefGoogle Scholar
- 20.Klurman, O.: Correlations of multiplicative functions and applications. Compos. Math. 153(8), 1622–1657 (2017)MathSciNetCrossRefGoogle Scholar
- 21.Matomäki, K., Radziwiłł, M.: A note on the Liouville function in short intervals. arXiv:1502.02374 (2015)
- 22.Matomäki, K., Radziwiłł, M.: Multiplicative functions in short intervals. Ann. Math. (2) 183(3), 1015–1056 (2016)MathSciNetCrossRefGoogle Scholar
- 23.Matomäki, K., Radziwiłł, M., Tao, T.: An averaged form of Chowla’s conjecture. Algebra Number Theory 9(9), 2167–2196 (2015)MathSciNetCrossRefGoogle Scholar
- 24.Matomäki, K., Radziwiłł, M., Tao, T.: Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges. arXiv:1707.01315 (2017)
- 25.Mikawa, H.: On prime twins in arithmetic progressions. Tsukuba J. Math. 16(2), 377–387 (1992)MathSciNetCrossRefGoogle Scholar
- 26.Montgomery, H.L.: The analytic principle of the large sieve. Bull. Am. Math. Soc. 84(4), 547–567 (1978)MathSciNetCrossRefGoogle Scholar
- 27.Montgomery, H .L.: Maximal variants of the large sieve. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 805–812 (1982)MathSciNetzbMATHGoogle Scholar
- 28.Montgomery, H. L. : Ten lectures on the interface between analytic number theory and harmonic analysis. In: CBMS Regional Conference Series in Mathematics, vol. 84. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1994)Google Scholar
- 29.Sidorenko, A.: A correlation inequality for bipartite graphs. Graphs Combin. 9(2), 201–204 (1993)MathSciNetCrossRefGoogle Scholar
- 30.Tao, T.: The logarithmically averaged Chowla and Elliott conjectures for two-point correlations. Forum Math. Pi 4:e8, 36 (2016)MathSciNetzbMATHGoogle Scholar
- 31.Tao, T.: Equivalence of the logarithmically averaged Chowla and Sarnak conjectures. In: Elsholtz, C., Grabner, P. (eds.) Number Theory—Diophantine Problems, Uniform Distribution and Applications, pp. 391–421. Springer, Cham (2017)CrossRefGoogle Scholar
- 32.Tao, T., Teräväinen, J.: The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures. arxiv: 1708.02610 (2017)
- 33.Tao, T., Teräväinen, J.: Odd order cases of the logarithmically averaged Chowla conjecture. J. Théor Nombres Bordx. 30(3), 997–1015 (2018)MathSciNetCrossRefGoogle Scholar
- 34.Zaccagnini, A.: Primes in almost all short intervals. Acta Arith. 84(3), 225–244 (1998)MathSciNetCrossRefGoogle Scholar
- 35.Zhan, T.: On the representation of large odd integer as a sum of three almost equal primes. Acta Math. Sin. (N.S.) 7(3), 259–272 (1991)MathSciNetCrossRefGoogle Scholar
- 36.Zhan, T.: A Chinese summary. Acta Math. Sin. 3(4), 575 (1992)MathSciNetGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019