Advertisement

Cohomology of p-adic Stein spaces

  • Pierre ColmezEmail author
  • Gabriel Dospinescu
  • Wiesława Nizioł
Article
  • 243 Downloads

Abstract

We compute p-adic étale and pro-étale cohomologies of Drinfeld half-spaces. In the pro-étale case, the main input is a comparison theorem for p-adic Stein spaces; the cohomology groups involved here are much bigger than in the case of étale cohomology of algebraic varieties or proper analytic spaces considered in all previous works. In the étale case, the classical p-adic comparison theorems allow us to pass to a computation of integral differential forms cohomologies which can be done because the standard formal models of Drinfeld half-spaces are pro-ordinary and their differential forms are acyclic.

Mathematics Subject Classification

11F85 14F20 14F30 20G25 22Fxx 

Notes

Acknowledgements

This paper owes great deal to the work of Elmar Grosse-Klönne. We are very grateful to him for his patient and detailed explanations of the computations and constructions in his papers. We would like to thank Fabrizio Andreatta, Bruno Chiarellotto, Frédéric Déglise, Ehud de Shalit, Veronika Ertl, Laurent Fargues, Florian Herzig, Luc Illusie, Arthur-César Le Bras, Sophie Morel, Arthur Ogus, and Lue Pan for helpful conversations related to the subject of this paper. We also thank the referee for useful comments. This paper was partly written during our visits to the IAS at Princeton, the Tata Institute in Mumbai, Banach Center in Warsaw (P.C, W.N), BICMR in Beijing (P.C.), Fudan University in Shanghai (W.N.), Princeton University (W.N.), and the Mittag-Leffler Institute (W.N.). We thank these institutions for their hospitality.

References

  1. 1.
    Bambozzi, F.: On a generalization of affinoid varieties. Ph.D. thesis, University of Padova. arXiv:1401.5702 [math.AG] (2013)
  2. 2.
    Berkovich, V.: On the comparison theorem for étale cohomology of non-Archimedean analytic spaces. Israel J. Math. 92, 45–59 (1995)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berkovich, V.: Smooth \(p\)-adic analytic spaces are locally contractible. Invent. Math. 137, 1–84 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berkovich, V.: Complex analytic vanishing cycles for formal schemes, preprintGoogle Scholar
  5. 5.
    Bhatt, B., Morrow, M., Scholze, P.: Integral \(p\)-adic Hodge theory. Publ. IHES 128, 219–397 (2018)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bhatt, B., Morrow, M., Scholze, P.: Topological Hochschild homology and integral \(p\)-adic Hodge theory. Publ. IHES 129, 199–310 (2019)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bloch, S., Kato, K.: \(p\)-adic étale cohomology. Publ. IHES 63, 107–152 (1986)zbMATHGoogle Scholar
  8. 8.
    Bloch, S., Kato, K.: \(L\)-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333–400, Progr. Math. 86, Birkhäuser (1990)Google Scholar
  9. 9.
    Boggi, M., Cook, G.C.: Continuous cohomology and homology of profinite groups. Doc. Math. 21, 1269–1312 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive groups. Mathematical Surveys and Monographs, vol. 67, 2nd edn. American Mathematical Society, New York (2000)Google Scholar
  11. 11.
    Bosco, G.: \(p\)-adic cohomology of Drinfeld spaces, M2 thesis. Univ, Paris-sud (2019)Google Scholar
  12. 12.
    Česnavičius, K., Koshikawa, T.: The \(A_{{\rm inf}}\)-cohomology in the semistable case. Compositio Math. 155, 2039–2128 (2019)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chiarellotto, B., Le Stum, B.: Pentes en cohomologie rigide et F-isocristaux unipotents. Manuscr. Math. 100, 455–468 (1999)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Colmez, P.: Espaces de Banach de dimension finie. J. Inst. Math. Jussieu 1, 331–439 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Colmez, P.: Espaces vectoriels de dimension finie et représentations de de Rham. Astérisque 319, 117–186 (2008)zbMATHGoogle Scholar
  16. 16.
    Colmez, P.: Représentations de \(GL_2({\mathbf{Q}}_p)\) et \((\phi,\Gamma )\)-modules. Astérisque 330, 281–509 (2010)Google Scholar
  17. 17.
    Colmez, P., Dospinescu, G., Nizioł, W.: Cohomologie \(p\)-adique de la tour de Drinfeld: le cas de la dimension 1. arXiv:1704.08928 [math.NT] (to appear in J. Amer. Math. Soc)
  18. 18.
    Colmez, P., Dospinescu, G., Nizioł, W.: The integral \(p\)-adic étale cohomology of Drinfeld symmetric spaces. arXiv:1905.11495 [math.AG]
  19. 19.
    Colmez, P., Dospinescu, G., Paškūnas, V.: The \(p\)-adic local Langlands correspondence for \(GL_2({\mathbf{Q}}_p)\). Camb. J. Math. 2, 1–47 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Colmez, P., Nizioł, W.: Syntomic complexes and \(p\)-adic nearby cycles. Invent. Math. 208, 1–108 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Colmez, P., Nizioł, W.: On the cohomology of the affine space. In: \(p\)-adic Hodge theory (2017), Simons Symposia, Springer (to appear). arXiv:1707.01133 [math.AG]
  22. 22.
    de Shalit, E.: The \(p\)-adic monodromy-weight conjecture for \(p\)-adically uniformized varieties. Compos. Math. 141, 101–120 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Drinfeld, V.G.: Elliptic modules. Math. Sb. 94, 594–627 (1974)MathSciNetGoogle Scholar
  24. 24.
    Drinfel’d, V.G.: Coverings of \(p\)-adic symmetric regions. Funct. Anal. Appl. 10(2), 107–115 (1976)zbMATHGoogle Scholar
  25. 25.
    Emerton, M.: Locally analytic vectors in representations of locally analytic \(p\)-adic groups. Mem. Am. Math. Soc. 248, 1175 (2017)zbMATHGoogle Scholar
  26. 26.
    Fontaine, J.-M., Messing, W.: \(p\)-adic periods and \(p\)-adic étale cohomology. In: Ribet, K. (ed.) Current Trends in Arithmetical Algebraic Geometry, vol. 67, pp. 179–207. American Mathematical Society, New York (1987)Google Scholar
  27. 27.
    Fresnel, J., van der Put, M.: Rigid Analytic Geometry and Its Applications, Progress in Mathematics, vol. 218. Birkäuser, Boston (2004)zbMATHGoogle Scholar
  28. 28.
    Gros, M.: Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Mém. Soc. Math. France 21, 1–87 (1985)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Grosse-Klönne, E.: Rigid analytic spaces with overconvergent structure sheaf. J. Reine Angew. Math. 519, 73–95 (2000)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Grosse-Klönne, E.: De Rham cohomology of rigid spaces. Math. Z. 247, 223–240 (2004)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Grosse-Klönne, E.: Compactifications of log morphisms. Tohoku Math. J. 56, 79–104 (2004)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Grosse-Klönne, E.: Frobenius and monodromy operators in rigid analysis, and Drinfeld’s symmetric space. J. Algebraic Geom. 14, 391–437 (2005)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Grosse-Klönne, E.: Integral structures in the \(p\)-adic holomorphic discrete series. Represent. Theory 9, 354–384 (2005)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Grosse-Klönne, E.: Acyclic coefficient systems on buildings. Compos. Math. 141, 769–786 (2005)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Grosse-Klönne, E.: Sheaves of bounded \(p\)-adic logarithmic differential forms. Ann. Sci. École Norm. Sup. 40, 351–386 (2007)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Grosse-Klönne, E.: On special representations of \(p\)-adic reductive groups. Duke Math. J. 163, 2179–2216 (2014)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Hyodo, O.: A note on \(p\)-adic étale cohomology in the semistable reduction case. Invent. Math. 91, 543–557 (1988)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Hyodo, O., Kato, K.: Semi-stable reduction and crystalline cohomology with logarithmic poles. Astérisque 223, 221–268 (1994)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces. Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, Braunschweig (1996)Google Scholar
  40. 40.
    Illusie, L.: Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. 12, 501–661 (1979)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Illusie, L., Raynaud, M.: Les suites spectrales associées au complexe de de Rham-Witt. Inst. Hautes Études Sci. Publ. Math. 57, 73–212 (1983)zbMATHGoogle Scholar
  42. 42.
    Illusie, L.: Ordinarité des intersections complètes générales. The Grothendieck Festschrift, Vol. II, 376–405, Progr. Math. 87, Birkhäuser (1990)Google Scholar
  43. 43.
    Illusie, L.: On the category of sheaves of objects of \({\mathscr {D}}(R)\) (after Beilinson and Lurie), notes (2013)Google Scholar
  44. 44.
    Iovita, A., Spiess, M.: Logarithmic differential forms on \(p\)-adic symmetric spaces. Duke Math. J. 110, 253–278 (2001)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Kashiwara, M., Schapira, P.: Ind-sheaves. Astérisque 271, 136 (2001)Google Scholar
  46. 46.
    Kashiwara, M., Schapira, P.: Categories and sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 332. Springer, Berlin (2006)zbMATHGoogle Scholar
  47. 47.
    Kato, K.: Semi-stable reduction and \(p\)-adic étale cohomology. Astérisque 223, 269–293 (1994)zbMATHGoogle Scholar
  48. 48.
    Keller, B.: Derived categories and their uses. In: Handbook of Algebra, Vol. 1, pp. 671–701, Handb. Algebr., vol. 1. Elsevier, North-Holland (1996)Google Scholar
  49. 49.
    Kato, K.: Logarithmic Structures of Fontaine–Illusie Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), pp. 191–224. Johns Hopkins University Press, Baltimore (1989)Google Scholar
  50. 50.
    Langer, A., Muralidharan, A.: An analogue of Raynaud’s theorem: weak formal schemes and dagger spaces. Münster J. Math. 6, 271–294 (2013)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Le Bras, A.-C.: Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine. Duke Math. J. 167, 3455–3532 (2018)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Lorenzon, P.: Logarithmic Hodge-Witt forms and Hyodo-Kato cohomology. J. Algebra 249, 247–265 (2002)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)Google Scholar
  54. 54.
    Lurie, J.: Higher Algebra, preprintGoogle Scholar
  55. 55.
    Mangino, E.M.: (LF)-spaces and tensor products. Math. Nachr. 185, 149–162 (1997)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Meredith, D.: Weak formal schemes. Nagoya Math. J. 45, 1–38 (1972)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Mokrane, A.: La suite spectrale des poids en cohomologie de Hyodo-Kato. Duke Math. J. 72, 301–337 (1993)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Nakkajima, Y.: \(p\)-adic weight spectral sequences of log varieties. J. Math. Sci. Univ. Tokyo 12, 513–661 (2005)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Nekovář, J., Nizioł, W.: Syntomic cohomology and \(p\)-adic regulators for varieties over \(p\)-adic fields. Algebra Number Theory 10, 1695–1790 (2016)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Ogus, A.: The convergent topos in characteristic \(p\). In: The Grothendieck Festschrift, vol. 3, pp. 133–162, Progress in Mathematics, 88, Birkhäuser (1990)Google Scholar
  61. 61.
    Ogus, A.: Lectures on Logarithmic Algebraic Geometry. Cambridge Studies in Advanced Mathematics, vol. 178. Cambridge University Press, Cambridge (2018)Google Scholar
  62. 62.
    Orlik, S.: Equivariant vector bundles on Drinfeld’s upper half space. Invent. Math. 172, 585–656 (2008)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Orlik, S.: The de Rham cohomology of Drinfeld’s half space. Münster J. Math. 8, 169–179 (2015)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Orlik, S.: The pro-étale cohomology of Drinfeld’s upper half space. arXiv:1908.10591 [math.NT] (2019)
  65. 65.
    Orlik, S., Schraen, B.: The Jordan-Hölder series of the locally analytic Steinberg representation. Doc. Math. 19, 647–671 (2014)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Orlik, S., Strauch, M.: On Jordan-Hölder series of some locally analytic representations. J. Am. Math. Soc. 28, 99–157 (2015)zbMATHGoogle Scholar
  67. 67.
    Perez-Garcia, C., Schikhof, W.H.: Locally Convex Spaces Over Non-Archimedean Valued Fields. Cambridge Studies in Advanced Mathematics, vol. 119. Cambridge University Press, Cambridge (2010)Google Scholar
  68. 68.
    Prosmans, F.: Derived categories for functional analysis. Publ. Res. Inst. Math. Sci. 36, 19–83 (2000)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Saito, T.: Weight spectral sequences and independence of \(\ell \). J. Inst. Math. Jussieu 2, 583–634 (2003)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Schimann, J., Ferrier, G., Houzel, C.: In: Houzel, C. (ed.) Seminaire Banach. Lecture Notes in Mathematics, vol. 277. Springer (1972)Google Scholar
  71. 71.
    Schneider, P., Stuhler, U.: The cohomology of \(p\)-adic symmetric spaces. Invent. Math. 105, 47–122 (1991)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Schneider, P.: Nonarchimedean Functional Analysis. Springer Monographs in Mathematics. Springer, Berlin (2002)zbMATHGoogle Scholar
  73. 73.
    Schneiders, J.-P.: Quasi-Abelian Categories and Sheaves. Mém. Soc. Math. Fr. 76, (1999)Google Scholar
  74. 74.
    Scholze, P.: \(p\)-adic Hodge Theory for Rigid-Analytic Varieties. Forum Math. Pi 1 , e1, 77 (2013)Google Scholar
  75. 75.
    Shiho, A.: Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology. J. Math. Sci. Univ. Tokyo 9, 1–163 (2002)Google Scholar
  76. 76.
    Shiho, A.: Relative log convergent cohomology and relative rigid cohomology I. arxiv:0707.1742v2 [math.NT]
  77. 77.
    Shiho, A.: Relative log convergent cohomology and relative rigid cohomology II. arXiv:0707.1743 [math.NT]
  78. 78.
    The Stacks project authors, The Stacks Project. http://stacks.math.columbia.edu (2018)
  79. 79.
    Tsuji, T.: \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137, 233–411 (1999)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Varol, O.: On the derived tensor product functors for (DF)- and Fréchet spaces. Studia Math. 180, 41–71 (2007)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Vezzani, A.: The Monsky-Washnitzer and the overconvergent realizations. Int. Math. Res. Not. IMRN 2018, 3443–3489 (2018)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Vignéras, M.-F.: Représentations \(\ell \)-modulaires d’un groupe réductif \(p\)-adique avec \(\ell \ne p\). Progr. Math. 137. Birkhäuser (1996)Google Scholar
  83. 83.
    Wengenroth, J.: Acyclic inductive spectra of Fréchet spaces. Studia Math. 120, 247–258 (1996)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Witte, M.: On a localisation sequence for the K-theory of skew power series rings. J. K Theory 11, 125–154 (2013)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Zheng, W.: Note on derived \(\infty \)-categories and monoidal structures, notes (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pierre Colmez
    • 1
    Email author
  • Gabriel Dospinescu
    • 2
  • Wiesława Nizioł
    • 2
  1. 1.CNRS, IMJ-PRGSorbonne UniversitéParisFrance
  2. 2.CNRS, UMPAÉcole Normale Supérieure de LyonLyonFrance

Personalised recommendations