Advertisement

On the K-theory of division algebras over local fields

  • Lars HesselholtEmail author
  • Michael Larsen
  • Ayelet Lindenstrauss
Article
  • 97 Downloads

Introduction

Let K be a complete discrete valuation field with finite residue field of characteristic p, and let D be a central division algebra over K of finite index d. Thirty years ago, Suslin and Yufryakov [ 35, Theorem 3] showed that for all prime numbers \(\ell \ne p\)

Notes

Acknowledgements

We gratefully acknowledge the generous assistance that we have received from a DNRF Niels Bohr Professorship, Simons Foundation Grant 359565, and NSF Grants DMS-1702152 and DMS-1552766. The first author also thanks Indiana University and the Hausdorff Research Institute for Mathematics in Bonn for their hospitality and support, and the second and third author thank the University of Copenhagen for its hospitality and support. The first author further thanks Thomas Geisser for helpful discussions. We are much indebted to Jacob Lurie for pointing out a mistake in an earlier version of the work presented here, and finally, we thank an anonymous referee for many very helpful remarks.

References

  1. 1.
    Artin, M., Grothendieck, A., Verdier, J.L.: Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Séminaire de Géometrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Math., vol. 269, Springer, New York (1972)Google Scholar
  2. 2.
    Bass, H.: Algebraic \(K\)-Theory. W. A. Benjamin Inc, New York (1968)zbMATHGoogle Scholar
  3. 3.
    Bökstedt, M., Hsiang, W.-C., Madsen, I.: The cyclotomic trace and algebraic \(K\)-theory of spaces. Invent. Math. 111, 465–540 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borger, J.: The basic geometry of Witt vectors, I: the affine case. Algebra Number Theory 5, 231–285 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borger, J.: The basic geometry of Witt vectors: II: spaces. Math. Ann. 351, 877–933 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bourbaki, N.: Algebra I. Chapters 1–3. Translated from the French. Reprint of the 1989 English translation. Elements of Mathematics. Springer, Berlin (1998)Google Scholar
  7. 7.
    Bousfield, A.K.: The localization of spectra with respect to homology. Topology 18, 257–281 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956)zbMATHGoogle Scholar
  9. 9.
    Chan, H.Y.-W., Lindenstrauss, A.: Topological Hochschild homology of maximal orders in central simple \({\mathbb{Q}}\)-algebras. Algebr. Geom. Topol. 19, 31–75 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Drinfeld, V.: On the notion of geometric realization. Mosc. Math. J. 4, 619–626 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dundas, B.I.: \(K\)-theory theorems in topological cyclic homology. J. Pure Appl. Alg. 129, 23–33 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dundas, B.I., McCarthy, R.: Topological Hochschild homology of ring functors and exact categories. J. Pure Appl. Alg. 109, 231–294 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Geisser, T., Hesselholt, L.: Topological cyclic homology of schemes, algebraic \(K\)-theory (Seattle, WA, 1997). In: Proceedings of Symposia in Pure Mathematics, vol. 67, , pp. 41–87. American Mathematical Society, Providence (1999)Google Scholar
  14. 14.
    Geisser, T., Hesselholt, L.: On the \(K\)-theory of complete regular local \({\mathbb{F}}_p\)-algebras. Topology 45, 475–493 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Geller, S., Weibel, C.A.: Étale descent for Hochschild and cyclic homology. Comment. Math. Helv. 66, 368–388 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Giraud, J.: Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, vol. 179. Springer, Berlin (1971)Google Scholar
  17. 17.
    Hesselholt, L.: On the \(p\)-typical curves in Quillen’s \(K\)-theory. Acta Math. 177, 1–53 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hesselholt, L.: The big de Rham–Witt complex. Acta Math. 214, 135–207 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hesselholt, L., Madsen, I.: On the \(K\)-theory of finite algebras over Witt vectors of perfect fields. Topology 36, 29–102 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hesselholt, L., Madsen, I.: On the \(K\)-theory of local fields. Ann. Math. 158, 1–113 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Keller, B.: Chain complexes and stable categories. Manuscr. Math. 67, 379–417 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Krause, A.: The Tate spectral sequence for THH of log rings. Arbeitsgemeinschaft: Topological Cyclic Homology, Oberwolfach Report, vol. 15 (2018)Google Scholar
  23. 23.
    Larsen, M.: Filtrations, mixed complexes, and cyclic homology in mixed characteristic. K-Theory 9, 173–198 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Larsen, M., Lindenstrauss, A.: Topological Hochschild homology and the condition of Hochschild–Kostant–Rosenberg. Commun. Algebra 29, 1627–1638 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lindenstrauss, A.: A relative spectral sequence for topological Hochschild homology of spectra. J. Pure Appl. Algebra 148, 77–88 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lindenstrauss, A., Madsen, I.: Topological Hochschild homology of number rings. Trans. Am. Math. Soc. 352, 2179–2204 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer, New York (1998)zbMATHGoogle Scholar
  28. 28.
    Mandell, M.A., May, J.P., Shipley, B., Schwede, S.: Model categories of diagram spectra. Proc. Lond. Math. Soc. 82, 441–512 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Merkurjev, A., \(K\)-theory of simple algebras, \(K\)-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, : Proceedings of Symposia Pure Mathematics, vol. 58, American Mathematical Society, Providence 1995, pp. 65–83 (1992)Google Scholar
  30. 30.
    Nikolaus, T.: Topological cyclic homology and cyclic \(K\)-theory. Arbeitsgemeinschaft: Topological Cyclic Homology, Oberwolfach Report, vol. 15 (2018)Google Scholar
  31. 31.
    Nikolaus, T., Scholze, P.: On topological cyclic homology. Acta Math. 221, 203–409 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Popescu, D.: General Néron desingularization. Nagoya Math. J. 100, 97–126 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Quillen, D., Higher algebraic \(K\)-theory I, Algebraic \(K\)-theory I: Higher \(K\)-theories (Battelle Memorial Inst., Seattle, Washington, 1972). Lecture Notes in Mathematics, vol. 341, pp. 85–147. Springer, New York (1973)Google Scholar
  34. 34.
    Reiner, I.: Maximal Orders. London Mathematical Society Monographs, vol. 5. Academic Press, London (1975)zbMATHGoogle Scholar
  35. 35.
    Suslin, A.A., Yufryakov, A.V.: \(K\)-theory of local division algebras. Soviet Math. Dokl. 33, 794–798 (1986)zbMATHGoogle Scholar
  36. 36.
    Thomason, R.W., Trobaugh, T.: Higher algebraic \(K\)-theory of schemes and of derived categories. In: Grothendieck Festschrift, Volume III, Progress in Mathematics, vol. 88, pp. 247–435 (1990)Google Scholar
  37. 37.
    Waldhausen, F., Algebraic \(K\)-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983). Lecture Notes in Mathematics, vol. 1126, pp. 318–419. Springer, Berlin (1985)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  • Lars Hesselholt
    • 1
    • 2
    Email author
  • Michael Larsen
    • 3
  • Ayelet Lindenstrauss
    • 3
  1. 1.Nagoya UniversityNagoyaJapan
  2. 2.University of CopenhagenCopenhagenDenmark
  3. 3.Indiana UniversityBloomingtonUSA

Personalised recommendations