Advertisement

A Lagrangian sphere which is not a vanishing cycle

  • François GreerEmail author
Article
  • 67 Downloads

Abstract

We give examples of Calabi–Yau threefolds containing Lagrangian spheres which are not vanishing cycles of nodal degenerations, answering a question of Donaldson in the negative.

Notes

Acknowledgements

The author is grateful to Mark McLean for suggesting the problem, and to the anonymous referees for valuable comments. He has also benefitted from communications with Denis Auroux, Jonathan Evans, Ivan Smith, Richard Thomas, and Abigail Ward.

References

  1. 1.
    Auroux, D.: The canonical pencils on Horikawa surfaces. Geom. Topol. 10(4), 2173–2217 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beauville, A.: Les familles stables de courbes elliptiques sur \({\mathbb{P}}^1\) admettant quatre fibres singulières. C. R. Acad. Sci. Paris 294(19), 657–660 (1982)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Demailly, J.-P., Hwang, J.-M., Peternell, T.: Compact manifolds covered by a torus. J. Geom. Anal. 18(2), 324–340 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Donaldson, S.: Polynomials, vanishing cycles and Floer homology. In: Arnold, V., Atiyah, M., Lax, P., Mazur, B. (eds.) Mathematics: Frontiers and Perspectives, The American Mathematical Monthly, pp. 55–64. American Mathematical Society, Providence (2000)Google Scholar
  5. 5.
    Herfurtner, S.: Elliptic surfaces with four singular fibres. Math. Ann. 291(1), 319–342 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Miranda, R.: The basic theory of elliptic surfaces. Dottorato di Ricerca in Matematica. ETS Editrice, Pisa (1989)Google Scholar
  7. 7.
    Schoen, C.: On fiber products of rational elliptic surfaces with section. Math. Z. 197(2), 177–199 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sheridan, N., Smith, I.: Symplectic topology of K3 surfaces via mirror symmetry. math.SG. arXiv:1709.09439
  9. 9.
    Smith, I., Thomas, R.: Symplectic surgeries from singularities. Turk. J. Math. 27(1), 231–250 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Smith, I., Thomas, R.P., Yau, S.-T.: Symplectic conifold transitions. J. Differ. Geom. 62(2), 209–242 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Simons Center for Geometry and Physics, Stony Brook UniversityStony BrookUSA

Personalised recommendations