Advertisement

Strong amenability and the infinite conjugacy class property

  • Joshua Frisch
  • Omer TamuzEmail author
  • Pooya Vahidi Ferdowsi
Article

Abstract

A group is said to be strongly amenable if each of its proximal topological actions has a fixed point. We show that a finitely generated group is strongly amenable if and only if it is virtually nilpotent. More generally, a countable discrete group is strongly amenable if and only if none of its quotients have the infinite conjugacy class property.

Notes

Acknowledgements

We would like to thank Benjamin Weiss and Andrew Zucker for correcting mistakes in earlier drafts of this paper, and to likewise thank an anonymous referee for many corrections and suggestions. We would also like to thank Yair Hartman and Mehrdad Kalantar for drawing our attention to the relation of our results to the unique trace property of group von Neumann algebras.

References

  1. 1.
    Breuillard, E., Kalantar, M., Kennedy, M., Ozawa, N.: C*-simplicity and the unique trace property for discrete groups. Publ. Math. l’IHÉS 126(1), 35–71 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dai, X., Glasner, E.: On universal minimal proximal flows of topological groups. arXiv preprint arXiv:1708.02468 (2017)
  3. 3.
    Duguid, A.: A class of hyper-FC-groups. Pac. J. Math. 10(1), 117–120 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Duguid, A.M., McLain, D.H.: FC-nilpotent and FC-soluble groups. In: Mathematical Proceedings of the Cambridge Philosophical Society, pp. 391–398 (1956)Google Scholar
  5. 5.
    Fejes Töth, G., Kuperberg, W.: Packing and covering with convex sets. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, Part b, pp. 799–860. North-Holland, Amsterdam (1993)CrossRefGoogle Scholar
  6. 6.
    Frisch, J., Ferdowsi, P.V.: Non-virtually nilpotent groups have infinite conjugacy class quotients. arXiv preprint arXiv:1803.05064 (2018)
  7. 7.
    Frisch, J., Tamuz, O.: Symbolic dynamics on amenable groups: the entropy of generic shifts. Ergod. Theory Dyn. Syst. 37(4), 1187–1210 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Furman, A.: On minimal, strongly proximal actions of locally compact groups. Isr. J. Math. 136(1), 173–187 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Glasner, E., Weiss, B.: Minimal actions of the group of permutations of the integers. Geom. Funct. Anal. 12(5), 964–988 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Glasner, S.: Proximal Flows. Lecture Notes in Mathematics, vol. 517. Springer, Berlin (1976)CrossRefzbMATHGoogle Scholar
  11. 11.
    Glasner, S.: Proximal flows of lie groups. Isr. J. Math. 45(2), 97–99 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Haimo, F.: The FC-chain of a group. Can. J. Math. 5, 498–511 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hartman, Y., Juschenko, K., Tamuz, O., Ferdowsi, P.V.: Thompson’s group F is not strongly amenable. Ergod. Theory Dyn. Syst. 39(4), 925–929 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kalantar, M., Kennedy, M.: Boundaries of reduced C*-algebras of discrete groups. J. Reine Angew. Math. (Crelles Journal) 727, 247–267 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    McLain, D.H.: Remarks on the upper central series of a group. Glasg. Math. J. 3(1), 38–44 (1956)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Melleray, J., Van Thé, L.N., Tsankov, T.: Polish groups with metrizable universal minimal flows. Int. Math. Res. Not. 2016(5), 1285–1307 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Neumann, B.H.: Groups covered by permutable subsets. J. Lond. Math. Soc. 1(2), 236–248 (1954)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Joshua Frisch
    • 1
  • Omer Tamuz
    • 1
    Email author
  • Pooya Vahidi Ferdowsi
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations