Advertisement

Collet, Eckmann and the bifurcation measure

  • Matthieu Astorg
  • Thomas GauthierEmail author
  • Nicolae Mihalache
  • Gabriel Vigny
Article
  • 31 Downloads

Abstract

The moduli space \(\mathcal {M}_d\) of degree \(d\ge 2\) rational maps can naturally be endowed with a measure \(\mu _{\text{ bif }}\) detecting maximal bifurcations, called the bifurcation measure. We prove that the support of the bifurcation measure \(\mu _{\text{ bif }}\) has positive Lebesgue measure. To do so, we establish a general sufficient condition for the conjugacy class of a rational map to belong to the support of \(\mu _{\text{ bif }}\) and we exhibit a large set of Collet–Eckmann rational maps which satisfy this condition. As a consequence, we get a set of Collet–Eckmann rational maps of positive Lebesgue measure which are approximated by hyperbolic rational maps.

Notes

Acknowledgements

We thank the anonymous referee for his careful reading and his suggestions, in particular his formulation of the large scale condition.

References

  1. 1.
    Aspenberg, M.: Rational Misiurewicz maps are rare. Commun. Math. Phys. 291(3), 645–658 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aspenberg, M.: The Collet–Eckmann condition for rational functions on the Riemann sphere. Math. Z. 273(3–4), 935–980 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Astorg, M: Summability Condition and Rigidity for Finite Type Maps (2016). arXiv:1602.05172
  4. 4.
    Berteloot, F.: Bifurcation currents in holomorphic families of rational maps. In: Patrizio, G., et al. (eds.) Pluripotential Theory. Lecture Notes in Mathematics, vol. 2075, pp. 1–93. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Bassanelli, G., Berteloot, F.: Bifurcation currents in holomorphic dynamics on \(\mathbb{P}^k\). J. Reine Angew. Math. 608, 201–235 (2007)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Benedicks, M., Carleson, L.: On iterations of \(1-ax^2\) on \((-1,1)\). Ann. Math. (2) 122(1), 1–25 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Buff, X., Epstein, A.L.: Bifurcation measure and postcritically finite rational maps. In: Schleicher, D. (ed.) Complex Dynamics: Families and Friends, pp. 491–512. A K Peters Ltd, Wellesley (2009)CrossRefGoogle Scholar
  8. 8.
    Berteloot, F., Mayer, V.: Rudiments de Dynamique Holomorphe. Cours Spécialisés, vol. 7. Société Mathématique de France, Paris (2001)zbMATHGoogle Scholar
  9. 9.
    Demailly, J.-P.: Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. Mém. Soc. Math. France (N.S.) 19, 124 (1985)zbMATHGoogle Scholar
  10. 10.
    DeMarco, L.: Dynamics of rational maps: a current on the bifurcation locus. Math. Res. Lett. 8(1–2), 57–66 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dujardin, R.: The supports of higher bifurcation currents. Ann. Fac. Sci. Toulouse Math. (6) 22(3), 445–464 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dujardin, R., Favre, C.: Distribution of rational maps with a preperiodic critical point. Am. J. Math. 130(4), 979–1032 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gauthier, T.: Strong bifurcation loci of full Hausdorff dimension. Ann. Sci. Éc. Norm. Sup. (4) 45(6), 947–984 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gauthier, T.: Higher bifurcation currents, neutral cycles, and the Mandelbrot set. Indiana Univ. Math. J. 63(4), 917–937 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Graczyk, J., Smirnov, S.: Collet, Eckmann and Hölder. Invent. Math. 133(1), 69–96 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jonsson, M.: Holomorphic motions of hyperbolic sets. Mich. Math. J. 45(2), 409–415 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Levin, G: Perturbations of weakly expanding critical orbits. Frontiers in Complex Dynamics: In Celebration of John Milnor’s 80th Birthday, pp. 163–196 (2014)Google Scholar
  18. 18.
    Lyubich, Mikhail Yu.: Investigation of the stability of the dynamics of rational functions. Teor. Funktsiĭ Funkt. Anal. i Prilozhen. 42, 72–91 (1984). (Translated in Selecta Math. Soviet. 9 (1990), no. 1, 69–90) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Mañé, R.: On the uniqueness of the maximizing measure for rational maps. Bol. Soc. Brasil. Mat. 14(1), 27–43 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    McMullen, C.T.: Complex Dynamics and Renormalization, Annals of Mathematics Studies, vol. 135. Princeton University Press, Princeton (1994)Google Scholar
  21. 21.
    Milnor, J.: On Lattès Maps. In: Branner, B., Hjorth, P., Petersen, C.L. (eds.) Dynamics on the Riemann Sphere, pp. 9–43. European Mathematical Society, Zürich (2006)CrossRefGoogle Scholar
  22. 22.
    Mañé, R., Sad, P., Sullivan, D.: On the dynamics of rational maps. Ann. Sci. Éc. Norm. Sup. (4) 16(2), 193–217 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Przytycki, F.: Conical limit set and Poincaré exponent for iterations of rational functions. Trans. Am. Math. Soc. 351(5), 2081–2099 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    Przytycki, F., Rivera-Letelier, J., Smirnov, S.: Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math. 151(1), 29–63 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rees, M.: Positive measure sets of ergodic rational maps. Ann. Sci. Éc. Norm. Sup. (4) 19(3), 383–407 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Shishikura, M.: The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. Math. (2) 147(2), 225–267 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sibony, N., Wong, P.M.: Some results on global analytic sets. In: Lelong, P., Skoda, H. (eds.) Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79 (French), volume 822 of Lecture Notes in Mathematics, pp. 221–237. Springer, Berlin (1980)Google Scholar
  28. 28.
    Tan, L.: Similarity between the Mandelbrot set and Julia sets. Commun. Math. Phys. 134(3), 587–617 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Tsujii, M.: Positive Lyapunov exponents in families of one-dimensional dynamical systems. Invent. Math. 111(1), 113–137 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Matthieu Astorg
    • 1
  • Thomas Gauthier
    • 2
    • 3
    Email author
  • Nicolae Mihalache
    • 4
  • Gabriel Vigny
    • 2
  1. 1.MAPMOUniversité d’OrléansOrléans Cedex 2France
  2. 2.LAMFAUPJVAmiens Cedex 1France
  3. 3.CMLS, École polytechnique, CNRSUniversité Paris-SaclayPalaiseau CedexFrance
  4. 4.LAMAUPECCréteil CedexFrance

Personalised recommendations