On the spectrum of multi-frequency quasiperiodic Schrödinger operators with large coupling

  • Michael Goldstein
  • Wilhelm SchlagEmail author
  • Mircea Voda


We study multi-frequency quasiperiodic Schrödinger operators on \({\mathbb {Z}}\). We prove that for a large real analytic potential satisfying certain restrictions the spectrum consists of a single interval. The result is a consequence of a criterion for the spectrum to contain an interval at a given location that we establish non-perturbatively in the regime of positive Lyapunov exponent.



  1. 1.
    Avila, A., Jitomirskaya, S.: The ten martini problem. Ann. Math. (2) 170(1), 303–342 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avila, A., Jitomirskaya, S.: Almost localization and almost reducibility. J. Eur. Math. Soc. (JEMS) 12(1), 93–131 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Avila, A.: Global theory of one-frequency Schrödinger operators. Acta Math. 215(1), 1–54 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bourgain, J.: On the spectrum of lattice Schrödinger operators with deterministic potential. J. Anal. Math. 87, 37–75 (2002). Dedicated to the memory of Thomas H. WolffMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton, NJ (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bourgain, J.: Positivity and continuity of the Lyapounov exponent for shifts on \(\mathbb{T}^d\) with arbitrary frequency vector and real analytic potential. J. Anal. Math. 96, 313–355 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bourgain, J.: Anderson localization for quasi-periodic lattice Schrödinger operators on \(\mathbb{Z}^d\), \(d\) arbitrary. Geom. Funct. Anal. 17(3), 682–706 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bourgain, J., Goldstein, M.: On nonperturbative localization with quasi-periodic potential. Ann. Math. (2) 152(3), 835–879 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chulaevsky, V.A., Sinaĭ, Y.G.: Anderson localization for the \(1\)-D discrete Schrödinger operator with two-frequency potential. Commun. Math. Phys. 125(1), 91–112 (1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    Duarte, P., Klein, S.: Continuity, positivity and simplicity of the Lyapunov exponents for quasi-periodic cocycles. ArXiv e-prints, March (2016)Google Scholar
  11. 11.
    Dinaburg, E.I., Sinaĭ, J.G.: The one-dimensional Schrödinger equation with quasiperiodic potential. Funkcional. Anal. i Priložen. 9(4), 8–21 (1975)Google Scholar
  12. 12.
    Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132(1), 5–25 (1990)CrossRefzbMATHGoogle Scholar
  13. 13.
    Goldstein, M., Schlag, W.: Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. Math. (2) 154(1), 155–203 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goldstein, M., Schlag, W.: Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal. 18(3), 755–869 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Goldstein, M., Schlag, W.: On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations. Ann. Math. (2) 173(1), 337–475 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goldstein, M., Schlag, W., Voda, M.: On localization and spectrum of multi-frequency quasi-periodic operators. ArXiv e-prints (2016)Google Scholar
  17. 17.
    Jitomirskaya, S., Marx, C.A.: Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergod. Theory Dyn. Syst. 37(8), 2353–2393 (2017)CrossRefzbMATHGoogle Scholar
  18. 18.
    Krüger, H.: The spectrum of skew-shift Schrödinger operators contains intervals. J. Funct. Anal. 262(3), 773–810 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Karpeshina, Y., Shterenberg, R.: Extended states for the Schrödinger operator with quasi-periodic potential in dimension two. ArXiv e-prints, August (2014)Google Scholar
  20. 20.
    Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Marden, M.: Geometry of Polynomials. Mathematical Surveys, No. 3, 2nd edn. American Mathematical Society, Providence, RI (1966)zbMATHGoogle Scholar
  22. 22.
    Puig, J.: Cantor spectrum for the almost Mathieu operator. Commun. Math. Phys. 244(2), 297–309 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sinaĭ, Y.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys. 46(5–6), 861–909 (1987)CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Zhang, Z.: Uniform positivity and continuity of Lyapunov exponents for a class of \(C^2\)-quasiperiodic Schrödinger cocycles. J. Funct. Anal. 268, 2525–2585 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Michael Goldstein
    • 1
  • Wilhelm Schlag
    • 2
    Email author
  • Mircea Voda
    • 1
    • 3
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsYale UniversityNew HavenUSA
  3. 3.Department of MathematicsThe University of ChicagoChicagoUSA

Personalised recommendations