Advertisement

Inventiones mathematicae

, Volume 215, Issue 3, pp 741–778 | Cite as

Classification of Rauzy–Veech groups: proof of the Zorich conjecture

  • Rodolfo Gutiérrez-RomoEmail author
Article

Abstract

We classify the Rauzy–Veech groups of all connected components of all strata of the moduli space of translation surfaces in absolute homology, showing, in particular, that they are commensurable to arithmetic lattices of symplectic groups. As a corollary, we prove a conjecture of Zorich about the Zariski-density of such groups.

Notes

Acknowledgements

I am grateful to Giovanni Forni for his interesting questions and remarks which motivated the newer versions of the article. I am also grateful to the two anonymous referees whose comments greatly improved the presentation of the results, and to my advisors, Anton Zorich and Carlos Matheus.

References

  1. 1.
    Avila, A., Matheus, C., Yoccoz, J.-C.: Zorich conjecture for hyperelliptic Rauzy–Veech groups. Math. Ann. 370, 785–809 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avila, A., Viana, M.: Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture. Acta Math. 198(1), 1–56 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benoist, Y.: Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal. 7(1), 1–47 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berrick, A.J., Gebhardt, V., Paris, L.: Finite index subgroups of mapping class groups. Proc. Lond. Math. Soc. 108(3), 575–599 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Filip, S.: Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle. Duke Math. J. 166(4), 657–706 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton, NJ (2012)zbMATHGoogle Scholar
  7. 7.
    Forni, G.: Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. Math. 155(1), 1–103 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grove, L.C.: Classical Groups and Geometric Algebra. Graduate Studies in Mathematics, vol. 39. American Mathematical Society, Providence, RI (2002)Google Scholar
  9. 9.
    Gutiérrez-Romo, R.: Simplicity of the Lyapunov spectra of certain quadratic differentials. (2017). arXiv: 1711.02006 [math.DS]
  10. 10.
    Johnson, D.: Spin structures and quadratic forms on surfaces. J. Lond. Math. Soc. 22(2), 365–373 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kontsevich, M., Zorich, A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math. 153(3), 631–678 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Magee, M.: On Selberg’s Eigenvalue Conjecture for moduli spaces of abelian differentials. Preprint (2016). arXiv: 1609.05500 [math.DS]
  13. 13.
    Mumford, D.: Tata lectures on theta. I. Modern Birkhäuser Classics. With the collaboration of C. Musili, M. Nori, E. Previato and M. Stillman, Reprint of the 1983 edition. Birkhäuser Boston Inc, Boston, MA (2007)Google Scholar
  14. 14.
    Rauzy, G.: Échanges d’intervalles et transformations induites. Acta Arith. 34(4), 315–328 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Veech, W.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. 115(1), 201–242 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Viana, M.: Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19(1), 7–100 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yoccoz, J.-C.: Interval exchange maps and translation surfaces. In: Homogeneous Flows, Moduli Spaces and Arithmetic, Vol. 10. Clay Mathematics Proceedings of American Mathmatical Society, Providence, RI, pp. 1–69 (2010)Google Scholar
  18. 18.
    Zorich, A.: Explicit Jenkins–Strebel representatives of all strata of Abelian and quadratic differentials. J. Mod. Dyn. 2(1), 139–185 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zorich, A.: How do the leaves of a closed 1-form wind around a surface? In: Pseudoperiodic Topology, vol. 197. American Mathematical Society Translations Series 2. American Mathematical Society, Providence, RI, pp. 135–178 (1999)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Mathématiques de Jussieu – Paris Rive GaucheParis Cedex 13France

Personalised recommendations