Abstract
We compute the asymptotic growth rate of the number \(N({{\mathcal {C}}}, R)\) of closed geodesics of length \(\le R\) in a connected component \({{\mathcal {C}}}\) of a stratum of quadratic differentials. We prove that, for any \(0\le \theta \le 1\), the number of closed geodesics \(\gamma \) of length at most R such that \(\gamma \) spends at least \(\theta \)-fraction of its time outside of a compact subset of \({{\mathcal {C}}}\) is exponentially smaller than \(N({{\mathcal {C}}}, R)\). The theorem follows from a lattice counting statement. For points x, y in the moduli space \({{{\mathcal {M}}}(S)}\) of Riemann surfaces, and for \(0 \le \theta \le 1\) we find an upper-bound for the number of geodesic paths of length \(\le R\) in \({{\mathcal {C}}}\) which connect a point near x to a point near y and spend at least a \(\theta \)-fraction of the time outside of a compact subset of \({{\mathcal {C}}}\).
Notes
Acknowledgements
We would like to thanks the referee for many useful comments that have improve the exposition of the paper at several places.
References
- 1.Arnoux, P., Yoccoz, J.: Construction de difféomorphismes pseudo-Anosov. C. R. Acad. Sci. Paris Sér. I Math. 292(1), 75–78 (1981)MathSciNetzbMATHGoogle Scholar
- 2.Avila, A., Gouezel, S., Yoccoz, J.-C.: Exponential mixing for the Teichmüller flow. Publ. Math. IHES 104, 143–211 (2006)CrossRefzbMATHGoogle Scholar
- 3.Avila, A., João, R.M.: Exponential Mixing for the Teichmüller flow in the Space of Quadratic Differentials, preprintGoogle Scholar
- 4.Athreya, J.: Quantitative recurrence and large deviations for Teichmüller geodesic flow. Geom. Dedicata 119, 121–140 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Athreya, J., Bufetov, A., Eskin, A., Mirzakhani, M.: Lattice point asymptotics and volume growth on Teichmüller space. Duke Math. J. 161(6), 1055–1111 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Athreya, J., Forni, G.: Deviation of ergodic averages for rational polygonal billiards. Duke Math. J. 144(2), 285–319 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Avila, A., Gouëzel, S.: Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow. Ann. of Math. (2) 178(2), 385–442 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Avila, A., Gouëzel, S., Yoccoz, J.-C.: Exponential mixing for the Teichmüller flow. Publ. Math. Inst. Hautes Études Sci. 104, 143–211 (2006)CrossRefzbMATHGoogle Scholar
- 9.Bers, L.: An extremal problem for quasiconformal maps and a theorem by Thurston. Acta Math. 141, 73–98 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Bleiler, S., Casson, A.: Automorphisms of Surfaces After Nielsen and Thurston. London Mathematical Society Student Texts, vol. 9. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
- 11.Bufetov, A.: Logarithmic asymptotics for the number of periodic orbits of the Teichmueller flow on Veech’s space of zippered rectangles. Mosc. Math. J. 9(2), 245–261 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Choi, Y., Series, C., Rafi, K.: Lines of minima and Teichmülcer geodesics. Geom. Funct. Anal. 18(3), 698–754 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Dumas, D.: Skinning Maps are Finite-to-one, preprintGoogle Scholar
- 14.Eskin, A., Margulis, G., Mozes, S.: Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. Ann. of Math. (2) 147(1), 93–141 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Eskin, A., Masur, H.: Asymptotic formulas on flat surfaces. Ergodic Theory Dynam. Syst. 21, 443–478 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Eskin, A., Mirzakhani, M.: Counting closed geodesics in moduli space. J. Mod. Dyn. 1, 71–105 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Farb, B., Margalit, D.: A primer on mapping class groups. In: Princeton Mathematical Series, vol. 49 (2012)Google Scholar
- 18.Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces, Astérisque, 66 and 67 (1979)Google Scholar
- 19.Forni, G.: Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. of Math. (2) 155(1), 1–103 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Gardiner, F., Masur, H.: Extremal length geometry of Teichmüller space. Complex Var. Theory Appl. 16(2–3), 209–237 (1991)zbMATHGoogle Scholar
- 21.Hamenstädt, U.: Dynamics of the Teichmueller flow on compact invariant sets. J. Mod. Dyn. 4, 393–418 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Hamenstädt, U.: Bowen’s construction for the Teichmüeller flow. J. Mod. Dyn. 7, 489–526 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Harer, J.L., Penner, R.C.: Combinatorics of Train Tracks. In: Annals of Mathematics Studies, vol. 125 (1992)Google Scholar
- 24.Hubbard, J.: Teichmüller Theory and Applications to Geometry, Topology, and Dynamics I, Matrix Editions (2006)Google Scholar
- 25.Ivanov, N.V., Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 167: Issled. Topol. 6(111–116), 191 (1988)Google Scholar
- 26.Kontsevich, M., Zorich, A.: Connected components of spaces of Abelian differentials with prescribed singularities. Invent. Math. 153, 631–683 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Katok, A., Hasselblat, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
- 28.Kerckhoff, S.: The asymptotic geometry of Teichmüller space. Topology 19, 23–41 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Lanneau, E.: Connected components of the strata of the moduli spaces of quadratic diferentials with prescribed singularities. Ann. Sci. Ecole Norm. Sup. (4) 41, 1–56 (2008)Google Scholar
- 30.Margulis, G.A.: On Some Aspects of the Theory of Anosov Flows, Ph.D. Thesis (1970), Springer, Berlin (2003)Google Scholar
- 31.Maskit, B.: Comparison of hyperbolic and extremal lengths. Ann. Acad. Sci. Fenn. 10, 381–386 (1985)MathSciNetzbMATHGoogle Scholar
- 32.Masur, H.: Interval exchange transformations and measured foliations. Ann. of Math. (2) 115(1), 169–200 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Masur, H., Minsky, Y.: Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal. 10(4): 902–974 (2000)Google Scholar
- 34.Masur, H., Smillie, J.: Hausdorff Dimension of Sets of Nonergodic Measured Foliations. Ann. Math. 134(3): 455–543 (1991)Google Scholar
- 35.Masur, H., Smillie, J.: Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms. Commentarii Mathematics Helevetici 68(1), 289–307 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 36.Minsky, Y.: Extremal length estimates and product regions in Teichmüller space. Duke Math. J. 83(2), 249–286 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- 37.Papadopoulos, A., Penner, R.: A characterization of pseudo-Anosov foliations. Pac. J. Math. 130, 359–377 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
- 38.Papadopoulos, A., Penner, R.: Enumerating pseudo-Anosov foliations. Pac. J. Math. 142(1), 159–173 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
- 39.Penner, R.: A construction of pseudo-Anosov homeomorphisms. Trans. Am. Math. Soc. 310(1), 179–197 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 40.Rafi, K.: A characterization of short curves of a Teichmüller geodesic. Geom. Topol. 9, 179–202 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 41.Rafi, K.: A combinatorial model for the Teichmüller metric. Geom. Funct. Anal 17(3), 936–959 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 42.Rafi, K.: Thick–thin decomposition of quadratic differentials. Math. Res. Lett. 14(2), 333–341 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 43.Rafi, K.: Hyperbolicity in Teichmüller space. Geom. Topol. 18–5, 3025–3053 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 44.Rafi, K.: Closed geodesics in the thin part of moduli space. In preparationGoogle Scholar
- 45.Strebel, K.: Quadratic differentials. Ergebnisse der Math 5, Springer, Berlin (1984)Google Scholar
- 46.Thurston, W.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. (N.S.) 19(2), 417–431 (1988)Google Scholar
- 47.Thurston, W.: Shapes of polyhedra and triangulations of the sphere, (English summary) The Epstein birthday schrift, 511Đ549, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry (1998)Google Scholar
- 48.Veech, W.: The Teichmüller geodesic flow. Ann. Math. (2) 124(3), 441–530 (1986)Google Scholar
- 49.Vorobets, Y.: Periodic geodesics on generic translation surfaces, (English summary) Algebraic and topological dynamics, 205Đ258, Contemp. Math., 385. Am. Math. Soc., Providence, RI (2005)Google Scholar