Advertisement

BDNF and NGF signals originating from sensory ganglia promote cranial motor axon growth

  • Lianlian Li
  • Qin Pu
  • Maik Hintze
  • Yong Wang
  • Matthias Eckhardt
  • Volkmar Gieselmann
  • Inga Tiemann
  • Xufeng Qi
  • Dongqing Cai
  • Jianlin Wang
  • Ruijin HuangEmail author
Research Article
  • 5 Downloads

Abstract

After exiting the hindbrain, branchial motor axons reach their targets in association with sensory ganglia. The trigeminal ganglion has been shown to promote motor axon growth from rhombomeres 2/3 and 4/5, but it is unknown whether this effect is ganglion specific and through which signals it is mediated. Here, we addressed these questions by co-cultures of ventral rhombomere 8 explants with cranial and spinal sensory ganglia in a collagen gel matrix. Our results show that all cranial sensory ganglia and even a trunk dorsal root ganglion can promote motor axon growth and that ganglia isolated from older embryos had a stronger effect on the axonal growth than younger ones. We found that brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are necessary and sufficient for this effect. Altogether, our results demonstrate that the promoting effect of sensory ganglia on cranial motor axon growth is stage dependent, but not ganglion specific and is mediated by BDNF and NGF signals.

Keywords

Sensory ganglion Cranial motor neuron BDNF NGF Axonal growth 

Notes

Acknowledgements

We are grateful for the technical assistance of Sandra Graefe in the Institute of Anatomy and Mr. Heinz Bioernsen in the Institute of Animal Science. We thank Developmental Studies Hybridoma Bank, Iowa City, IA, USA, for the antibody. This work was supported by grant of the DFG-Hu 729/10 and DFG-Hu 729/13 to R.H. and by the China Scholarship Council to J.W. and L.L.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Avivi C, Goldstein RS (2003) Differing patterns of neurotrophin-receptor expressing neurons allow distinction of the transient Frorieps’ ganglia from normal DRG before morphological differences appear. Brain Res Dev Brain Res 145:49–59PubMedCrossRefGoogle Scholar
  2. Avivi C, Cui S, Goren S, Goldstein RS (2002) Differences in neuronal differentiation between the transient cranial (Frorieps’) and normal dorsal root ganglia. Brain Res Dev Brain Res 135:19–28PubMedCrossRefGoogle Scholar
  3. Bai Z, Pu Q, Haque Z, Wang J, Huang R (2016) The unique axon trajectory of the accessory nerve is determined by intrinsic properties of the neural tube in the avian embryo. Ann Anat 205:85–89PubMedCrossRefPubMedCentralGoogle Scholar
  4. Caton A, Hacker A, Naeem A, Livet J, Maina F, Bladt F, Klein R, Birchmeier C, Guthrie S (2000) The branchial arches and HGF are growth-promoting and chemoattractant for cranial motor axons. Development 127:1751–1766PubMedPubMedCentralGoogle Scholar
  5. Chandrasekhar A (2004) Turning heads: development of vertebrate branchiomotor neurons. Dev Dyn 229:143–161PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cho KH, Jang HS, Cheong JS, Rodriguez-Vazquez JF, Murakami G, Abe H (2015) Sensory pathways in the human embryonic spinal accessory nerve with special reference to the associated lower cranial nerve ganglia. Childs Nerv Syst 31:95–99PubMedCrossRefGoogle Scholar
  7. Clarke JD, Lumsden A (1993) Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118:151–162PubMedGoogle Scholar
  8. Ernfors P, Ibanez CF, Ebendal T, Olson L, Persson H (1990) Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc Natl Acad Sci USA 87:5454–5458PubMedCrossRefGoogle Scholar
  9. Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435PubMedCrossRefGoogle Scholar
  10. Froriep A (1882) Über ein Ganglion des Hypoglossus und Wirbelanlagen in der Occipitalregion. Arch Anat Physiol Anat Abt S:279–302Google Scholar
  11. Froriep A, Beck W (1895) Über des Vorkommen dorsaler Hypoglossuswurzeln mit Ganglion, in der Reihe der Säugetiere. Anat Anz 10:688–696Google Scholar
  12. Geffen R, Goldstein RS (1996) Rescue of sensory ganglia that are programmed to degenerate in normal development: evidence that NGF modulates proliferation of DRG cells in vivo. Dev Biol 178:51–62PubMedCrossRefGoogle Scholar
  13. Guthrie S (2007) Patterning and axon guidance of cranial motor neurons. Nat Rev Neurosci 8:859–871PubMedCrossRefGoogle Scholar
  14. Guthrie S, Lumsden A (1992) Motor neuron pathfinding following rhombomere reversals in the chick embryo hindbrain. Development 114:663–673PubMedGoogle Scholar
  15. Guthrie S, Pini A (1995) Chemorepulsion of developing motor axons by the floor plate. Neuron 14:1117–1130PubMedCrossRefPubMedCentralGoogle Scholar
  16. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92PubMedCrossRefPubMedCentralGoogle Scholar
  17. Harlow DE, Yang H, Williams T, Barlow LA (2011) Epibranchial placode-derived neurons produce BDNF required for early sensory neuron development. Dev Dyn 240:309–323PubMedPubMedCentralCrossRefGoogle Scholar
  18. His W (1888) Centralen u. peripherischen Nervenbahnen beim menschlichen Embryo. Abhandl math-phys Cl Kgl Sachs Ges Wiss 14Google Scholar
  19. Hovorka MS, Uray NJ (2013) Microscopic clusters of sensory neurons in C1 spinal nerve roots and in the C1 level of the spinal accessory nerve in adult humans. Anat Rec (Hoboken) 296:1588–1593CrossRefGoogle Scholar
  20. Huang JK, Dorey K, Ishibashi S, Amaya E (2007) BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo. BMC Dev Biol 7:59PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232PubMedCrossRefGoogle Scholar
  22. Jacob J, Guthrie S (2000) Facial visceral motor neurons display specific rhombomere origin and axon pathfinding behavior in the chick. J Neurosci 20:7664–7671PubMedPubMedCentralCrossRefGoogle Scholar
  23. Jacob J, Tiveron MC, Brunet JF, Guthrie S (2000) Role of the target in the pathfinding of facial visceral motor axons. Mol Cell Neurosci 16:14–26PubMedCrossRefGoogle Scholar
  24. Jacob J, Hacker A, Guthrie S (2001) Mechanisms and molecules in motor neuron specification and axon pathfinding. BioEssays 23:582–595PubMedCrossRefGoogle Scholar
  25. Kuratani S, Tanaka S, Ishikawa Y, Zukeran C (1988) Early development of the hypoglossal nerve in the chick embryo as observed by the whole-mount nerve staining method. Am J Anat 182:155–168PubMedCrossRefGoogle Scholar
  26. Lewin GR, Barde YA (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19:289–317PubMedCrossRefGoogle Scholar
  27. Lim TM, Lunn ER, Keynes RJ, Stern CD (1987) The differing effects of occipital and trunk somites on neural development in the chick embryo. Development 100:525–533PubMedGoogle Scholar
  28. Lumsden A (2004) Segmentation and compartition in the early avian hindbrain. Mech Dev 121:1081–1088PubMedCrossRefGoogle Scholar
  29. Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337:424–428PubMedCrossRefGoogle Scholar
  30. Lumsden A, Sprawson N, Graham A (1991) Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113:1281–1291PubMedGoogle Scholar
  31. Moody SA, Heaton MB (1983a) Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. I. Ganglion development is necessary for motoneuron migration. J Comp Neurol 213:327–343PubMedCrossRefGoogle Scholar
  32. Moody SA, Heaton MB (1983b) Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. II. Ganglion axon ingrowth guides motoneuron migration. J Comp Neurol 213:344–349PubMedCrossRefPubMedCentralGoogle Scholar
  33. Moody SA, Heaton MB (1983c) Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. III. Ganglion perikarya direct motor axon growth in the periphery. J Comp Neurol 213:350–364PubMedCrossRefPubMedCentralGoogle Scholar
  34. Moody SA, Heaton MB (1983d) Ultrastructural observations of the migration and early development of trigeminal motoneurons in chick embryos. J Comp Neurol 216:20–35PubMedCrossRefPubMedCentralGoogle Scholar
  35. Naeem A, Abbas L, Guthrie S (2002) Comparison of the effects of HGF, BDNF, CT-1, CNTF, and the branchial arches on the growth of embryonic cranial motor neurons. J Neurobiol 51:101–114PubMedCrossRefGoogle Scholar
  36. Pu Q, Bai Z, Haque Z, Wang J, Huang R (2013a) Occipital somites guide motor axons of the accessory nerve in the avian embryo. Neuroscience 246:22–27PubMedCrossRefGoogle Scholar
  37. Pu Q, Patel K, Berger J, Christ B, Huang R (2013b) Scanning electron microscopic evidence for physical segmental boundaries in the anterior presomitic mesoderm. Ann Anat 195:484–487PubMedCrossRefPubMedCentralGoogle Scholar
  38. Robinson M, Adu J, Davies AM (1996) Timing and regulation of trkB and BDNF mRNA expression in placode-derived sensory neurons and their targets. Eur J Neurosci 8:2399–2406PubMedCrossRefGoogle Scholar
  39. Steljes TP, Kinoshita Y, Wheeler EF, Oppenheim RW, von Bartheld CS (1999) Neurotrophic factor regulation of developing avian oculomotor neurons: differential effects of BDNF and GDNF. J Neurobiol 41:295–315PubMedCrossRefGoogle Scholar
  40. Tucker A, Lumsden A, Guthrie S (1996) Cranial motor axons respond differently to the floor plate and sensory ganglia in collagen gel co-cultures. Eur J Neurosci 8:906–916PubMedCrossRefGoogle Scholar
  41. Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4:29–37PubMedCrossRefGoogle Scholar
  42. Wang L, Klein R, Zheng B, Marquardt T (2011) Anatomical coupling of sensory and motor nerve trajectory via axon tracking. Neuron 71:263–277PubMedCrossRefGoogle Scholar
  43. Wetmore C, Elde R (1991) Detection and characterization of a sensory microganglion associated with the spinal accessory nerve: a scanning laser confocal microscopic study of the neurons and their processes. J Comp Neurol 305:148–163PubMedCrossRefGoogle Scholar
  44. Yao L, Zhang D, Bernd P (1994) The onset of neurotrophin and trk mRNA expression in early embryonic tissues of the quail. Dev Biol 165:727–730PubMedCrossRefGoogle Scholar
  45. Zhou J, Pliego-Rivero B, Bradford HF, Stern GM (1996) The BDNF content of postnatal and adult rat brain: the effects of 6-hydroxydopamine lesions in adult brain. Brain Res Dev Brain Res 97:297–303PubMedCrossRefGoogle Scholar
  46. Zhou XF, Chie ET, Rush RA (1998) Distribution of brain-derived neurotrophic factor in cranial and spinal ganglia. Exp Neurol 149:237–242PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lianlian Li
    • 1
    • 2
    • 3
  • Qin Pu
    • 1
  • Maik Hintze
    • 1
  • Yong Wang
    • 4
  • Matthias Eckhardt
    • 4
  • Volkmar Gieselmann
    • 4
  • Inga Tiemann
    • 5
  • Xufeng Qi
    • 6
  • Dongqing Cai
    • 6
  • Jianlin Wang
    • 2
  • Ruijin Huang
    • 1
    • 7
    Email author
  1. 1.Department of Neuroanatomy, Institute of AnatomyUniversity of BonnBonnGermany
  2. 2.Institute of Zoology, School of Life ScienceLanzhou UniversityLanzhouChina
  3. 3.Institute of Basic MedicineShandong Academy of Medical SciencesJinanChina
  4. 4.Institute of Biochemistry and Molecular BiologyUniversity of BonnBonnGermany
  5. 5.Institute of Animal ScienceUniversity of BonnBonnGermany
  6. 6.Key Laboratory of Regenerative MedicineMinistry of Education, Jinan UniversityGuangzhouChina
  7. 7.Department of Molecular Embryology, Institute of Anatomy and Cell BiologyUniversity of FreiburgFreiburg im BreisgauGermany

Personalised recommendations