Experimental Brain Research

, Volume 236, Issue 4, pp 1181–1191 | Cite as

Redirection of neuroblast migration from the rostral migratory stream into a lesion in the prefrontal cortex of adult rats

Research Article
  • 67 Downloads

Abstract

Clinical treatment of structural brain damage today is largely limited to symptomatic approaches and the avoidance of secondary injury. However, neuronal precursor cells are constantly produced within specified regions of the mammalian brain throughout life. Here we evaluate the potential of the known chemoattractive properties of the glycoprotein laminin on neuroblasts to relocate the cells into damaged brain areas. Injection of a thin laminin tract, leading from the rostral migratory stream to an excitotoxic lesion within the medial prefrontal cortex of rats, enabled neuroblasts to migrate away from their physiological route towards the olfactory bulb into the lesion site. Once they reached the damaged tissue, they migrated further in a non-uniform orientation within the lesion. Furthermore, our data indicate that the process of diverted migration is still active 6 weeks after the treatment and that at least some of the neuroblasts are capable of maturing into adult neurons.

Keywords

Neuroblast migration Rostral migratory stream Brain lesion Laminin Migration cue Structural recovery 

Notes

Acknowledgements

We want to thank Maja Brand for her excellent contribution to tissue processing and immunostaining.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

References

  1. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457.  https://doi.org/10.1002/cne.901370404 PubMedCrossRefGoogle Scholar
  2. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335.  https://doi.org/10.1002/cne.901240303 PubMedCrossRefGoogle Scholar
  3. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970PubMedCrossRefGoogle Scholar
  4. Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529.  https://doi.org/10.1006/exnr.2000.7397 PubMedCrossRefGoogle Scholar
  5. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung Maggie SY, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding Kirsty L, Frisén J (2012) The age of olfactory bulb neurons in humans. Neuron 74:634–639.  https://doi.org/10.1016/j.neuron.2012.03.030 PubMedCrossRefGoogle Scholar
  6. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10.  https://doi.org/10.1002/cne.10874 PubMedCrossRefGoogle Scholar
  7. Connolly BS, Lang AE (2014) Pharmacological treatment of parkinson disease: a review. JAMA 311:1670–1683.  https://doi.org/10.1001/jama.2014.3654 PubMedCrossRefGoogle Scholar
  8. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtås S, van Roon-Mom WMC, Björk-Eriksson T, Nordborg C, Frisén J, Dragunow M, Faull RLM, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249.  https://doi.org/10.1126/science.1136281 PubMedCrossRefGoogle Scholar
  9. Curtis MA, Kam M, Faull RLM (2011) Neurogenesis in humans. Eur J Neurosci 33:1170–1174.  https://doi.org/10.1111/j.1460-9568.2011.07616.x PubMedCrossRefGoogle Scholar
  10. Dixon KJ, Theus MH, Nelersa CM, Mier J, Travieso LG, Yu TS, Kernie SG, Liebl DJ (2015) Endogenous neural stem/progenitor cells stabilize the cortical microenvironment after traumatic brain injury. J Neurotrauma 32:753–764.  https://doi.org/10.1089/neu.2014.3390 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dusart I, Marty S, Peschanski M (1991) Glial changes following an excitotoxic lesion in the CNS–II. Astrocytes. Neuroscience 45:541–549.  https://doi.org/10.1016/0306-4522(91)90269-T PubMedCrossRefGoogle Scholar
  12. Emsley JG, Hagg T (2003) α6β1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp Neurol 183:273–285.  https://doi.org/10.1016/s0014-4886(03)00209-7 PubMedCrossRefGoogle Scholar
  13. Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072–1083.  https://doi.org/10.1016/j.cell.2014.01.044 PubMedCrossRefGoogle Scholar
  14. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Ray J (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 92:11879–11883.  https://doi.org/10.1073/pnas.92.25.11879 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gallina P, Paganini M, Lombardini L, Mascalchi M, Porfirio B, Gadda D, Marini M, Pinzani P, Salvianti F, Crescioli C, Bucciantini S, Mechi C, Sarchielli E, Romoli AM, Bertini E, Urbani S, Bartolozzi B, De Cristofaro MT, Piacentini S, Saccardi R, Pupi A, Vannelli GB, Di Lorenzo N (2010) Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington’s disease patients after transplantation. Exp Neurol 222:30–41.  https://doi.org/10.1016/j.expneurol.2009.12.005 PubMedCrossRefGoogle Scholar
  16. García-Marqués J, De Carlos JA, Greer CA, López-Mascaraque L (2010) Different Astroglia permissivity controls the migration of olfactory bulb interneuron precursors. Glia 58:218–230.  https://doi.org/10.1002/glia.20918 PubMedCrossRefGoogle Scholar
  17. Jablonska B, Aguirre A, Raymond M, Szabo G, Kitabatake Y, Sailor KA, Ming G-L, Song H, Gallo V (2010) Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci 13:541–550.  https://doi.org/10.1038/nn.2536 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Jankovski A, Garcia C, Soriano E, Sotelo C (1998) Proliferation, migration and differentiation of neuronal progenitor cells in the adult mouse subventricular zone surgically separated from its olfactory bulb. Eur J Neurosci 10:3853–3868.  https://doi.org/10.1046/j.1460-9568.1998.00397.x PubMedCrossRefGoogle Scholar
  19. Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189.  https://doi.org/10.1016/s1044-7431(03)00159-3 PubMedCrossRefGoogle Scholar
  20. Kirschenbaum B, Doetsch F, Lois C, Alvarez-Buylla A (1999) Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J Neurosci 19:2171PubMedCrossRefGoogle Scholar
  21. Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98:4752–4757.  https://doi.org/10.1073/pnas.081074998 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kunze A, Achilles A, Keiner S, Witte OW, Redecker C (2015) Two distinct populations of doublecortin-positive cells in the perilesional zone of cortical infarcts. BMC Neurosci.  https://doi.org/10.1186/s12868-015-0160-8 PubMedGoogle Scholar
  23. Leavitt BR, Hernit-Grant CS, Macklis JD (1999) Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons. Exp Neurol 157:43–57.  https://doi.org/10.1006/exnr.1999.6982 PubMedCrossRefGoogle Scholar
  24. Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, Lo EH (2006) Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26:3491–3495.  https://doi.org/10.1523/jneurosci.4085-05.2006 PubMedCrossRefGoogle Scholar
  25. Leong SY, Turnley AM (2011) Regulation of adult neural precursor cell migration. Neurochem Int 59:382–393.  https://doi.org/10.1016/j.neuint.2010.12.024 PubMedCrossRefGoogle Scholar
  26. Li B, Piao C-S, Liu X-Y, Guo W-P, Xue Y-Q, Duan W-M, Gonzalez-Toledo ME, Zhao L-R (2010) Brain self-protection: The role of endogenous neural progenitor cells in adult brain after cerebral cortical ischemia. Brain Res 1327:91–102.  https://doi.org/10.1016/j.brainres.2010.02.030 PubMedCrossRefGoogle Scholar
  27. Lois C, García-Verdugo J-M, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981.  https://doi.org/10.1126/science.271.5251.978 PubMedCrossRefGoogle Scholar
  28. Martinez-Molina N, Kim Y, Hockberger P, Szele FG (2011) Rostral migratory stream neuroblasts turn and change directions in stereotypic patterns. Cell Adh Migr 5:83–95.  https://doi.org/10.4161/cam.5.1.13788 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Meyer AK, Maisel M, Hermann A, Stirl K, Storch A (2010) Restorative approaches in Parkinson’s Disease: Which cell type wins the race? J Neurol Sci 289:93–103.  https://doi.org/10.1016/j.jns.2009.08.024 PubMedCrossRefGoogle Scholar
  30. Ming G-l, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702.  https://doi.org/10.1016/j.neuron.2011.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Mizrahi A, Lu J, Irving R, Feng G, Katz LC (2006) In vivo imaging of juxtaglomerular neuron turnover in the mouse olfactory bulb. Proc Natl Acad Sci USA 103:1912–1917.  https://doi.org/10.1073/pnas.0506297103 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mouret A, Lepousez G, Gras J, Gabellec M-M, Lledo P-M (2009) Turnover of newborn olfactory bulb neurons optimizes olfaction. J Neurosci 29:12302PubMedCrossRefGoogle Scholar
  33. Nam SC, Kim Y, Dryanovski D, Walker A, Goings G, Woolfrey K, Kang SS, Chu C, Chenn A, Erdelyi F, Szabo G, Hockberger P, Szele FG (2007) Dynamic features of postnatal subventricular zone cell motility: a two-photon time-lapse study. J Comp Neurol 505:190–208.  https://doi.org/10.1002/cne.21473 PubMedCrossRefGoogle Scholar
  34. Nithianantharajah J, Hannan AJ (2011) Mechanisms mediating brain and cognitive reserve: Experience-dependent neuroprotection and functional compensation in animal models of neurodegenerative diseases. Prog NeuroPsychopharmacol Biol Psychiatry 35:331–339.  https://doi.org/10.1016/j.pnpbp.2010.10.026 PubMedCrossRefGoogle Scholar
  35. Omori Y, Suzuki M, Ozaki K, Harada Y, Nakamura Y, Takahashi E, Fujiwara T (1998) Expression and chromosomal localization of KIAA0369, a putative kinase structurally related to Doublecortin. J Hum Genet 43:169–177.  https://doi.org/10.1007/s100380050063 PubMedCrossRefGoogle Scholar
  36. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738PubMedCrossRefGoogle Scholar
  37. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates vol 4. Academic Press, LondonGoogle Scholar
  38. Peretto P, Merighi A, Fasolo A, Bonfanti L (1997) Glial tubes in the rostral migratory stream of the adult rat. Brain Res Bull 42:9–21.  https://doi.org/10.1016/S0361-9230(96)00116-5 PubMedCrossRefGoogle Scholar
  39. Petreanu L, Alvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22:6106–6113 doi:20026588PubMedCrossRefGoogle Scholar
  40. Pothayee N, Cummings DM, Schoenfeld TJ, Dodd S, Cameron HA, Belluscio L, Koretsky AP (2017) Magnetic resonance imaging of odorant activity-dependent migration of neural precursor cells and olfactory bulb growth. NeuroImage 158:232–241.  https://doi.org/10.1016/j.neuroimage.2017.06.060 PubMedCrossRefGoogle Scholar
  41. Reynolds B, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710.  https://doi.org/10.1126/science.1553558 PubMedCrossRefGoogle Scholar
  42. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744.  https://doi.org/10.1038/nature02301 PubMedCrossRefGoogle Scholar
  43. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai H-H, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo J-M, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386.  https://doi.org/10.1038/nature10487 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji—an open source platform for biological image analysis. Nat Methods. https://doi.org/10.1038/nmeth.2019 PubMedPubMedCentralGoogle Scholar
  45. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529.  https://doi.org/10.1002/mrd.22489 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675.  https://doi.org/10.1038/nmeth.2089 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Shin JJ, Fricker-Gates RA, Perez FA, Leavitt BR, Zurakowski D, Macklis JD (2000) Transplanted neuroblasts differentiate appropriately into projection neurons with correct neurotransmitter and receptor phenotype in neocortex undergoing targeted projection neuron degeneration. J Neurosci 20:7404–7416PubMedCrossRefGoogle Scholar
  48. Steindler DA, Laywell ED (2003) Astrocytes as stem cells: nomenclature, phenotype, and translation. Glia 43:62–69.  https://doi.org/10.1002/glia.10242 PubMedCrossRefGoogle Scholar
  49. Su Z, Niu W, Liu M-L, Zou Y, Zhang C-L (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:3338–3338.  https://doi.org/10.1038/ncomms4338 PubMedPubMedCentralGoogle Scholar
  50. Sun W, Kim H, Moon Y (2010) Control of neuronal migration through rostral migratory stream in mice. Anatomy Cell Biol 43:269–279.  https://doi.org/10.5115/acb.2010.43.4.269 CrossRefGoogle Scholar
  51. Verwer RWH, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CMF, Wouda J, van Dam AM, Lucassen PJ, Swaab DF (2007) Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 130:3321–3335.  https://doi.org/10.1093/brain/awm264 PubMedCrossRefGoogle Scholar
  52. Wang C, Liu F, Liu Y-Y, Zhao C-H, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21:1534–1550.  https://doi.org/10.1038/cr.2011.83 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886.  https://doi.org/10.1523/jneurosci.2121-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Wichterle H, García-Verdugo JM, Alvarez-Buylla A (1997) Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18:779–791.  https://doi.org/10.1016/s0896-6273(00)80317-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neuropharmacology, Center for Cognitive SciencesUniversity of BremenBremenGermany

Personalised recommendations