Experimental Brain Research

, Volume 236, Issue 4, pp 1007–1017 | Cite as

EEG-like signals can be synthesized from surface representations of single motor units of facial muscles

Research Article

Abstract

Electrodes for recording electroencephalogram (EEG) are placed on or around cranial muscles; hence, their electrical activity may contaminate the EEG signal even at rest conditions. Due to its role in maintaining mandibular posture, tonic activity of temporalis muscle interferes with the EEG signal particularly at fronto-temporal locations at single motor unit (SMU) level. By obtaining surface representation of a motor unit, we can evaluate its interference in EEG and if we could sum surface representations of several tonically active motor units, we could estimate the overall myogenic contamination in EEG. Therefore, in this study, we followed re-composition (RC) approach and generated EEG-like artefact model using surface representations of single motor units (RC). Furthermore, we compared signal characteristics of RC signals with simultaneously recorded EEG signal at different locations in terms of power spectral density and coherence. First, we found that RC signal represented the power spectral distribution of an EMG signal. Second, RC signal reflected the discharge rate of a SMU giving the greatest surface representation amplitude and strongest interference appeared as distinguishable frequency peak on RC power spectra. Moreover, for strong interferences, RC also contaminated the EEG at F7 and other EEG electrodes. These findings are important to illustrate the susceptibility of EEG signal to myogenic artefacts even at rest and the research using EEG coherence comparisons should consider muscle activity while drawing conclusions about neuronal interactions and oscillations.

Keywords

Single motor unit EMG EEG Myogenic artefacts Coherence Power 

References

  1. Baker SN (2007) Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol 17:649–655.  https://doi.org/10.1016/j.conb.2008.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barry RJ, Clarke AR, Hajos M, Dupuy FE, McCarthy R, Selikowitz M (2011) EEG coherence and symptom profiles of children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 122:1327–1332.  https://doi.org/10.1016/j.clinph.2011.01.007 CrossRefPubMedGoogle Scholar
  3. Boytsova JA, Danko SG, Medvedev SV (2016) When EMG contamination does not necessarily hide high-frequency EEG: scalp electrical recordings before and after dysport injections. Exp Brain Res 234:3091–3106.  https://doi.org/10.1007/s00221-016-4708-3 CrossRefPubMedGoogle Scholar
  4. Cannon R, Lubar J, Gerke A, Thornton K, Hutchens T, McCammon V (2006) EEG Spectral-power and coherence: LORETA neurofeedback training in the anterior cingulate gyrus. J Neurother 10:5–31.  https://doi.org/10.1300/J184v10n01_02 CrossRefGoogle Scholar
  5. Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495.  https://doi.org/10.1152/japplphysiol.01070.2003 CrossRefPubMedGoogle Scholar
  6. Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88:220–235.  https://doi.org/10.1016/j.neuron.2015.09.034 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR (2003) EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol 114:1580–1593.  https://doi.org/10.1016/S1388-2457(03)00093-2 CrossRefPubMedGoogle Scholar
  8. Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241:5–8.  https://doi.org/10.1016/s0304-3940(97)00964-6 CrossRefPubMedGoogle Scholar
  9. Hannam AG, McMillan AS (1994) Internal organization in the human jaw muscles. Crit Rev Oral Biol Med 5:55–89.  https://doi.org/10.1177/10454411940050010301 CrossRefPubMedGoogle Scholar
  10. Kakuda N, Nagaoka M, Tanaka R (1991) Discrimination of different motor units by spike-triggered averaging of surface electromyograms. Neurosci Lett 122:237–240.  https://doi.org/10.1016/0304-3940(91)90867-s CrossRefPubMedGoogle Scholar
  11. Keizer AW, Verment RS, Hommel B (2010) Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval. Neuroimage 49:3404–3413.  https://doi.org/10.1016/j.neuroimage.2009.11.023 CrossRefPubMedGoogle Scholar
  12. Korfage JAM, Van Eijden TMGJ. (1999) Regional differences in fibre type composition in the human temporalis muscle. J Anat 194:355–362.  https://doi.org/10.1046/j.1469-7580.1999.19430355.x CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kovach CK, Tsuchiya N, Kawasaki H, Oya H, Howard MA 3rd, Adolphs R (2011) Manifestation of ocular-muscle EMG contamination in human intracranial recordings. Neuroimage 54:213–233.  https://doi.org/10.1016/j.neuroimage.2010.08.002 CrossRefPubMedGoogle Scholar
  14. Lopes da Silva F (2013) EEG and MEG: relevance to neuroscience. Neuron 80:1112–1128.  https://doi.org/10.1016/j.neuron.2013.10.017 CrossRefPubMedGoogle Scholar
  15. McGill KC, Lateva ZC, Marateb HR (2005) EMGLAB: an interactive EMG decomposition program. J Neurosci Methods 149:121–133.  https://doi.org/10.1016/j.jneumeth.2005.05.015 CrossRefPubMedGoogle Scholar
  16. Miles TS, Türker KS (1987) Decomposition of the human electromyogramme in an inhibitory reflex. Exp Brain Res 65:337–342. https://doi.org/10.1007%2FBF00236306?LI=truePubMedGoogle Scholar
  17. Miltner WH, Braun C, Arnold M, Witte H, Taub E (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397:434–436.  https://doi.org/10.1038/17126 CrossRefPubMedGoogle Scholar
  18. Mima T, Toma K, Koshy B, Hallett M (2001) Coherence between cortical and muscular activities after subcortical stroke. Stroke 32:2597–2601.  https://doi.org/10.1161/hs1101.098764 CrossRefPubMedGoogle Scholar
  19. Mottaz A, Solca M, Magnin C, Corbet T, Schnider A, Guggisberg AG (2015) Neurofeedback training of alpha-band coherence enhances motor performance. Clin Neurophysiol 126:1754–1760.  https://doi.org/10.1016/j.clinph.2014.11.023 CrossRefPubMedGoogle Scholar
  20. Negro F, Farina D (2011) Linear transmission of cortical oscillations to the neural drive to muscles is mediated by common projections to populations of motoneurons in humans. J Physiol 589:629–637.  https://doi.org/10.1113/jphysiol.2010.202473 CrossRefPubMedGoogle Scholar
  21. Omlor W, Patino L, Hepp-Reymond MC, Kristeva R (2007) Gamma-range corticomuscular coherence during dynamic force output. Neuroimage 34:1191–1198.  https://doi.org/10.1016/j.neuroimage.2006.10.018 CrossRefPubMedGoogle Scholar
  22. Paluch K, Jurewicz K, Rogala J et al (2017) Beware: recruitment of muscle activity by the eeg-neurofeedback trainings of high frequencies. Front Hum Neurosci 11:119.  https://doi.org/10.3389/fnhum.2017.00119 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pope KJ, Fitzgibbon SP, Lewis TW, Whitham EM, Willoughby JO (2009) Relation of gamma oscillations in scalp recordings to muscular activity. Brain Topogr 22:13–17.  https://doi.org/10.1007/s10548-009-0081-x CrossRefPubMedGoogle Scholar
  24. Pulvermüller F, Lutzenberger W, Preissl H, Birbaumer N (1995) Spectral responses in the gamma-band: physiological signs of higher cognitive processes? Neuroreport 6:2059–2064CrossRefPubMedGoogle Scholar
  25. Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53:1–31.  https://doi.org/10.1016/0079-6107(89)90004-7 CrossRefPubMedGoogle Scholar
  26. Sacchet MD, Mellinger J, Sitaram R, Braun C, Birbaumer N, Fetz E (2012) Volitional control of neuromagnetic coherence. Front Neurosci 6:189.  https://doi.org/10.3389/fnins.2012.00189 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Schnitzler A, Gross J, Timmermann L (2000) Synchronised oscillations of the human sensorimotor cortex. Acta Neurobiol Exp 60:271–287Google Scholar
  28. Staufenbiel SM, Brouwer AM, Keizer AW, van Wouwe NC (2014) Effect of beta and gamma neurofeedback on memory and intelligence in the elderly. Biol Psychol 95:74–85.  https://doi.org/10.1016/j.biopsycho.2013.05.020 CrossRefPubMedGoogle Scholar
  29. van Boxtel A (2001) Optimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck muscles. Psychophysiology 38:22–34.  https://doi.org/10.1111/1469-8986.3810022 CrossRefPubMedGoogle Scholar
  30. van Eijden TMGJ., Turkawski SJJ (2001) Morphology and physiology of masticatory muscle motor units. Crit Rev Oral Biol Med 12:76–91.  https://doi.org/10.1177/10454411010120010601 CrossRefPubMedGoogle Scholar
  31. von Carlowitz-Ghori K, Bayraktaroglu Z, Waterstraat G, Curio G, Nikulin VV (2015) Voluntary control of corticomuscular coherence through neurofeedback: a proof-of-principle study in healthy subjects. Neuroscience 290:243–254.  https://doi.org/10.1016/j.neuroscience.2015.01.013 CrossRefGoogle Scholar
  32. Whitham EM, Pope KJ, Fitzgibbon SP, Lewis T, Clark CR, Loveless S et al (2007) Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin Neurophysiol 118:1877–1888.  https://doi.org/10.1016/j.clinph.2007.04.027 CrossRefPubMedGoogle Scholar
  33. Whitham EM, Lewis T, Pope KJ et al (2008) Thinking activates EMG in scalp electrical recordings. Clin Neurophysiol 119:1166–1175.  https://doi.org/10.1016/j.clinph.2008.01.024 CrossRefPubMedGoogle Scholar
  34. Yilmaz G, Ungan P, Sebik O, Ugincius P, Türker KS (2014) Interference of tonic muscle activity on the EEG: a single motor unit study. Front Hum Neurosci 8:504.  https://doi.org/10.3389/fnhum.2014.00504 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yilmaz G, Ugincius P, Sebik O, Türker KS (2015) Tonic activity of the human temporalis muscle at mandibular rest position. Arch Oral Biol 60:1645–1649.  https://doi.org/10.1016/j.archoralbio.2015.08.013 CrossRefPubMedGoogle Scholar
  36. Zanto TP, Rubens MT, Thangavel A, Gazzaley A (2011) Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat Neurosci 14:656–661.  https://doi.org/10.1038/nn.2773 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Koc University School of MedicineIstanbulTurkey

Personalised recommendations