Experimental Brain Research

, Volume 233, Issue 3, pp 1007–1018 | Cite as

Improved gait adjustments after gait adaptability training are associated with reduced attentional demands in persons with stroke

  • Mariëlle W. van OoijenEmail author
  • Anita Heeren
  • Katrijn Smulders
  • Alexander C. H. Geurts
  • Thomas W. J. Janssen
  • Peter J. Beek
  • Vivian Weerdesteyn
  • Melvyn Roerdink
Research Article


After stroke, the ability to make step adjustments during walking is reduced and requires more attention, which may cause problems during community walking. The C-Mill is an innovative treadmill augmented with visual context (e.g., obstacles and stepping targets), which was designed specifically to practice gait adaptability. The objective of this study was to determine whether C-Mill gait adaptability training can help to improve gait adjustments and associated attentional demands. Sixteen community-ambulating persons in the chronic stage of stroke (age: 54.8 ± 10.8 years) received ten sessions of C-Mill training within 5–6 weeks. Prior to and after the intervention period, participants performed an obstacle-avoidance task with and without a secondary attention-demanding auditory Stroop task to assess their ability to make gait adjustments (i.e., obstacle-avoidance success rates) as well as the associated attentional demands (i.e., Stroop success rates, stratified for pre-crossing, crossing, and post-crossing strides). Obstacle-avoidance success rates improved after C-Mill training from 52.4 ± 16.3 % at pretest to 77.0 ± 16.4 % at posttest (p < 0.001). This improvement was accompanied by greater Stroop success rates during the obstacle-crossing stride only (pretest: 62.9 ± 24.9 %, posttest: 77.5 ± 20.4 %, p = 0.006). The observed improvements in obstacle-avoidance success rates and Stroop success rates were strongly correlated (r = 0.68, p = 0.015). The ability to make gait adjustments and the associated attentional demands can be successfully targeted in persons with stroke using C-Mill training, which suggests that its underlying assumptions regarding motor control are appropriate. This study lends support and guidance for designing a randomized controlled trial to further examine the potential of C-Mill training for improving safe community ambulation after stroke.


Stroke Exercise therapy Rehabilitation Gait Attention Dual task 



The authors thank Judith Vloothuis, rehabilitation physician at Reade, Centre for Rehabilitation and Rheumatology, for conducting the intake visits. The authors also thank the physical therapists Peter Elich, Sifra Broeder, Sjoerd Heubers, and Jasper den Boer for their feedback on the training intervention. From the department of Rehabilitation at the Radboud University, the authors thank Coen Bongers, Digna de Kam, and Jorik Nonnekes for supporting data collection and Roland Loeffen and Roos van Swigchem for their technical support. This study was funded by the Dutch Brain Foundation (‘Hersenstichting Nederland’), Grant 2010(1)-25. The contributions of Melvyn Roerdink and Vivian Weerdesteyn were supported by Veni Grants 451-09-024 and 916-10-106, respectively, of The Netherlands Organization for Scientific Research (NWO).

Conflict of interest

ForceLink (producer of the C-Mill) was not financially involved in this study and had no influence on the interpretation of data and the final conclusions.

Supplementary material

Supplementary material 1 (WMV 10670 kb)


  1. Canning CG, Ada L, Paul SS (2006) Is automaticity of walking regained after stroke? Disabil Rehabil 28:97–102. doi: 10.1080/09638280500167712 PubMedCrossRefGoogle Scholar
  2. Cohen G, Martin M (1975) Hemisphere differences in an auditory Stroop test. Percept Psychophys 17:79–83CrossRefGoogle Scholar
  3. Collen FM, Wade DT, Bradshaw CM (1990) Mobility after stroke: reliability of measures of impairment and disability. Int Disabil Stud 12:6–9PubMedCrossRefGoogle Scholar
  4. Collin C, Wade D (1990) Assessing motor impairment after stroke: a pilot reliability study. J Neurol Neurosurg Psychiatry 53:576–579PubMedCentralPubMedCrossRefGoogle Scholar
  5. de Bruin ED, Reith A, Dorflinger M (2011) Feasibility of strength-balance training extended with computer game dancing in older people; does it affect dual task costs of walking? J Nov Physiother 1:1–7. doi: 10.4172/2165-7025.1000104 CrossRefGoogle Scholar
  6. Den Otter AR, Geurts AC, de Haart M, Mulder T, Duysens J (2005) Step characteristics during obstacle avoidance in hemiplegic stroke. Exp Brain Res 161:180–192. doi: 10.1007/s00221-004-2057-0 CrossRefGoogle Scholar
  7. Field A (2009) Discovering statistics using SPSS, 3rd edn. Sage, New YorkGoogle Scholar
  8. Fonteyn EMR, Heeren A, Engels J-JC, Boer JJD, van de Warrenburg BPC, Weerdesteyn V (2014) Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration. Gait Posture 40:247–251. doi: 10.1016/j.gaitpost.2014.04.190 PubMedCrossRefGoogle Scholar
  9. Friedman PJ (1990) Gait recovery after hemiplegic stroke. Int Disabil Stud 12:119–122PubMedCrossRefGoogle Scholar
  10. Gladstone DJ, Danells CJ, Black SE (2002) The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair 16:232–240. doi: 10.1177/154596802401105171 PubMedCrossRefGoogle Scholar
  11. Go AS et al (2013) Executive summary: heart disease and stroke statistics—2013 update: a report from the American heart association. Circulation 127:143–152. doi: 10.1161/CIR.0b013e318282ab8f PubMedCrossRefGoogle Scholar
  12. Heeren A, van Ooijen MW, Geurts ACH, Day BL, Janssen TWJ, Beek PJ, Roerdink M, Weerdesteyn V (2013) Step by step: a proof of concept study of C-Mill gait adaptability training in the chronic phase after stroke. J Rehabil Med 45:616–622. doi: 10.2340/16501977-1180 PubMedCrossRefGoogle Scholar
  13. Hegeman J, Weerdesteyn V, van den Bemt B, Nienhuis B, van Limbeek J, Duysens J (2012) Dual-tasking interferes with obstacle avoidance reactions in healthy seniors. Gait Posture 36:236–240. doi: 10.1016/j.gaitpost.2012.02.024 PubMedCrossRefGoogle Scholar
  14. Holleran CL, Straube DD, Kinnaird CR, Leddy AL, Hornby TG (2014) Feasibility and potential efficacy of high-intensity stepping training in variable contexts in subacute and chronic stroke. Neurorehabil Neural Repair 28:643–651. doi: 10.1177/1545968314521001 PubMedCrossRefGoogle Scholar
  15. Houdijk H, van Ooijen MW, Kraal JJ, Wiggerts HO, Polomski W, Janssen TW, Roerdink M (2012) Assessing gait adaptability in people with a unilateral amputation on an instrumented treadmill with a projected visual context. Phys Ther 92:1452–1460. doi: 10.2522/ptj.20110362 PubMedCrossRefGoogle Scholar
  16. Hyndman D, Ashburn A (2004) Stops walking when talking as a predictor of falls in people with stroke living in the community. J Neurol Neurosurg Psychiatry 75:994–997. doi: 10.1136/jnnp.2003.016014 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hyndman D, Ashburn A, Stack E (2002) Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers. Arch Phys Med Rehabil 83:165–170. doi: 10.1053/apmr.2002.28030 PubMedCrossRefGoogle Scholar
  18. Hyndman D, Ashburn A, Yardley L, Stack E (2006) Interference between balance, gait and cognitive task performance among people with stroke living in the community. Disabil Rehabil 28:849–856. doi: 10.1080/09638280500534994 PubMedCrossRefGoogle Scholar
  19. Jaffe DL, Brown DA, Pierson-Carey CD, Buckley EL, Lew HL (2004) Stepping over obstacles to improve walking in individuals with poststroke hemiplegia. J Rehabil Res Dev 41:283–292. doi: 10.1682/JRRD.2004.03.0283 PubMedCrossRefGoogle Scholar
  20. Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 76:27–32PubMedCrossRefGoogle Scholar
  21. Lajoie Y, Teasdale N, Bard C, Fienry M (1993) Attentional demands for static and dynamic equilibrium. Exp Brain Res 97:139–144PubMedCrossRefGoogle Scholar
  22. Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8:741–754. doi: 10.1016/S1474-4422(09)70150-4 PubMedCrossRefGoogle Scholar
  23. Langhorne P, Bernhardt J, Kwakkel G (2011) Stroke rehabilitation. Lancet 377:1693–1702. doi: 10.1016/S0140-6736(11)60325-5 PubMedCrossRefGoogle Scholar
  24. Mehrholz J, Wagner K, Rutte K, Meissner D, Pohl M (2007) Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch Phys Med Rehabil 88:1314–1319. doi: 10.1016/j.apmr.2007.06.764 PubMedCrossRefGoogle Scholar
  25. Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM (2011) Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with parkinson’s disease? J Gerontol A Biol Sci Med Sci 66:234–240. doi: 10.1093/gerona/glq201 PubMedCrossRefGoogle Scholar
  26. Pestronk A, Florence J, Levine T, Al-Lozi MT, Lopate G, Miller T, Ramneantu I, Waheed W, Stambuk M (2004) Sensory exam with a quantitative tuning fork: rapid, sensitive and predictive of SNAP amplitude. Neurology 62:461–464PubMedCrossRefGoogle Scholar
  27. Pichierri G, Coppe A, Lorenzetti S, Murer K, de Bruin ED (2012) The effect of a cognitive-motor intervention on voluntary step execution under single and dual task conditions in older adults: a randomized controlled pilot study. Clin Interv Aging 7:175–184. doi: 10.2147/CIA.S32558 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Potocanac Z, Hoogkamer W, Carpes FP, Pijnappels M, Verschueren SMP, Duysens J (2014) Response inhibition during avoidance of virtual obstacles while walking. Gait Posture 39:641–644. doi: 10.1016/j.gaitpost.2013.07.125 PubMedCrossRefGoogle Scholar
  29. Roerdink M, Beek PJ (2009) Device for displaying target indications for foot movements to persons with a walking disorder. US patent 2009246746-A1 (October 1, 2009), European patent 2106779-A1 (October 7, 2009), Japanese patent 2009240775-A (October 22, 2009), and Dutch patent 1035236-C2 (October 1, 2009)Google Scholar
  30. Roerdink M, Lamoth CJ, van Kordelaar J, Elich P, Konijnenbelt M, Kwakkel G, Beek PJ (2009) Rhythm perturbations in acoustically paced treadmill walking after stroke. Neurorehabilitation Neural Repair 23:668–678. doi: 10.1177/1545968309332879 PubMedCrossRefGoogle Scholar
  31. Said CM, Goldie PA, Patla AE, Sparrow WA, Martin KE (1999) Obstacle crossing in subjects with stroke. Arch Phys Med Rehabil 80:1054–1059. doi: 10.1016/S0003-9993(99)90060-6 PubMedCrossRefGoogle Scholar
  32. Schillings AM, Van Wezel BM, Duysens J (1996) Mechanically induced stumbling during human treadmill walking. J Neurosci Methods 67:11–17. doi: 10.1016/0165-0270(95)00149-2 PubMedCrossRefGoogle Scholar
  33. Siu K-C, Catena RD, Chou L-S, Donkelaar P, Woollacott MH (2008) Effects of a secondary task on obstacle avoidance in healthy young adults. Exp Brain Res 184:115–120. doi: 10.1007/s00221-007-1087-9 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Smulders E, van Lankveld W, Laan R, Duysens J, Weerdesteyn V (2011) Can improved obstacle avoidance performance explain the effectiveness of a multimodal falls prevention program for persons with osteoporosis? J Am Geriatr Soc 59:368–369. doi: 10.1111/j.1532-5415.2011.03254.x PubMedCrossRefGoogle Scholar
  35. Smulders K, van Swigchem R, de Swart BJ, Geurts AC, Weerdesteyn V (2012) Community-dwelling people with chronic stroke need disproportionate attention while walking and negotiating obstacles. Gait Posture 36:127–132. doi: 10.1016/j.gaitpost.2012.02.002 PubMedCrossRefGoogle Scholar
  36. van Ooijen MW, Roerdink M, Trekop M, Visschedijk J, Janssen TW, Beek PJ (2013) Functional gait rehabilitation in elderly people following a fall-related hip fracture using a treadmill with visual context: design of a randomized controlled trial. BMC Geriatr 13:34. doi: 10.1186/1471-2318-13-34 PubMedCentralPubMedCrossRefGoogle Scholar
  37. van Swigchem R, van Duijnhoven HJ, den Boer J, Geurts AC, Weerdesteyn V (2012) Effect of peroneal electrical stimulation versus an ankle-foot orthosis on obstacle avoidance ability in people with stroke-related foot drop. Phys Ther 92:398–406. doi: 10.2522/ptj.20100405 PubMedCrossRefGoogle Scholar
  38. van Swigchem R, van Duijnhoven HJ, den Boer J, Geurts AC, Weerdesteyn V (2013) Deficits in motor response to avoid sudden obstacles during gait in functional walkers poststroke. Neurorehabilitation Neural Repair 27:230–239. doi: 10.1177/1545968312462070 PubMedCrossRefGoogle Scholar
  39. Weerdesteyn V, Schillings AM, van Galen GP, Duysens J (2003) Distraction affects the performance of obstacle avoidance during walking. J Mot Behav 35:53–63. doi: 10.1080/00222890309602121 PubMedCrossRefGoogle Scholar
  40. Weerdesteyn V, Nienhuis B, Hampsink B, Duysens J (2004) Gait adjustments in response to an obstacle are faster than voluntary reactions. Hum Mov Sci 23:351–363. doi: 10.1016/j.humov.2004.08.011 PubMedCrossRefGoogle Scholar
  41. Weerdesteyn V, Rijken H, Geurts ACH, Smits-Engelsman BCM, Mulder T, Duysens J (2006) A five-week exercise program can reduce falls and improve obstacle avoidance in the elderly. Gerontology 52:131–141. doi: 10.1159/000091822 PubMedCrossRefGoogle Scholar
  42. Weerdesteyn V, Nienhuis B, Geurts AC, Duysens J (2007) Age-related deficits in early response characteristics of obstacle avoidance under time pressure. J Gerontol A Biol Sci Med Sci 62:1042–1047PubMedCrossRefGoogle Scholar
  43. Weerdesteyn V, de Niet M, van Duijnhoven HJ, Geurts AC (2008) Falls in individuals with stroke. J Rehabil Res Dev 45:1195–1213. doi: 10.1682/JRRD.2007.09.0145 PubMedCrossRefGoogle Scholar
  44. Wickelgren WA (1977) Speed-accuracy tradeoff and information processing dynamics. Acta Psychol 41:67–85CrossRefGoogle Scholar
  45. Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16:1–14. doi: 10.1016/S0966-6362(01)00156-4 PubMedCrossRefGoogle Scholar
  46. Yamada M, Aoyama T, Arai H, Nagai K, Tanaka B, Uemura K, Mori S, Ichihashi N (2012) Complex obstacle negotiation exercise can prevent falls in community-dwelling elderly Japanese aged 75 years and older. Geriatr Gerontol Int 12:461–467. doi: 10.1111/j.1447-0594.2011.00794.x PubMedCrossRefGoogle Scholar
  47. Yang YR, Tsai MP, Chuang TY, Sung WH, Wang RY (2008) Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture 28:201–206. doi: 10.1016/j.gaitpost.2007.11.007 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mariëlle W. van Ooijen
    • 1
    • 2
    Email author
  • Anita Heeren
    • 3
    • 4
    • 5
  • Katrijn Smulders
    • 6
    • 7
  • Alexander C. H. Geurts
    • 3
    • 4
    • 8
  • Thomas W. J. Janssen
    • 1
    • 2
  • Peter J. Beek
    • 1
  • Vivian Weerdesteyn
    • 3
    • 8
  • Melvyn Roerdink
    • 1
  1. 1.MOVE Research Institute Amsterdam, Faculty of Human Movement SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Amsterdam Rehabilitation Research Center | ReadeAmsterdamThe Netherlands
  3. 3.Department of Rehabilitation, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
  4. 4.Sint MaartenskliniekCentre for RehabilitationNijmegenThe Netherlands
  5. 5.Rehabilitation Medical Centre Groot KlimmendaalArnhemThe Netherlands
  6. 6.Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
  7. 7.HAN University of Applied SciencesInstitute for Studies in Sports and ExerciseNijmegenThe Netherlands
  8. 8.Sint Maartenskliniek ResearchNijmegenThe Netherlands

Personalised recommendations