Liouville Quantum Gravity with Matter Central Charge in (1, 25): A Probabilistic Approach

  • 32 Accesses


There is a substantial literature concerning Liouville quantum gravity (LQG) in two dimensions with conformal matter field of central charge \({{\mathbf {c}}}_{\mathrm M} \in (-\infty ,1]\). Via the DDK ansatz, LQG can equivalently be described as the random geometry obtained by exponentiating \(\gamma \) times a variant of the planar Gaussian free field, where \(\gamma \in (0,2]\) satisfies \({\mathbf {c}}_{\mathrm M} = 25 - 6(2/\gamma + \gamma /2)^2\). Physics considerations suggest that LQG should also make sense in the regime when \({\mathbf {c}}_{\mathrm M} > 1\). However, the behavior in this regime is rather mysterious in part because the corresponding value of \(\gamma \) is complex, so analytic continuations of various formulas give complex answers which are difficult to interpret in a probabilistic setting. We introduce and study a discretization of LQG which makes sense for all values of \({\mathbf {c}}_{\mathrm M} \in (-\infty ,25)\). Our discretization consists of a random planar map, defined as the adjacency graph of a tiling of the plane by dyadic squares which all have approximately the same “LQG size" with respect to the Gaussian free field. We prove that several formulas for dimension-related quantities are still valid for \(\mathbf{c}_{\mathrm M} \in (1,25)\), with the caveat that the dimension is infinite when the formulas give a complex answer. In particular, we prove an extension of the (geometric) KPZ formula for \(\mathbf{c}_{\mathrm M} \in (1,25)\), which gives a finite quantum dimension if and only if the Euclidean dimension is at most \((25-\mathbf{c}_{\mathrm M} )/12\). We also show that the graph distance between typical points with respect to our discrete model grows polynomially whereas the cardinality of a graph distance ball of radius r grows faster than any power of r (which suggests that the Hausdorff dimension of LQG in the case when \({\mathbf {c}}_{\mathrm M} \in (1,25)\) is infinite). We include a substantial list of open problems.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    See [DRV16, Rem18, GRV16] for works concerning LQG with non-simply connected topologies.

  2. 2.

    In the physics literature it is common to use \(b = \frac{\gamma }{2}\) instead of \(\gamma \).

  3. 3.

    Here we mean distance function in the sense of a metric which gives the distance between any pair of points. We use the phrase “distance function” rather than “metric” to avoid confusion with the Riemannian metric tensor \(e^{\gamma h}(dx^2+dy^2)\).

  4. 4.

    The original KPZ formula in [KPZ88] described what the primary fields of the matter field CFT become when they are coupled to quantum gravity. This question seems to be mathematically out of reach so far but mathematicians have proved a weaker formulation [DS11, RV11] which relates the fractal dimension of a set sampled independently from the GFF as measured with the Euclidean metric to the fractal dimension of the same set as measured by the random distance function corresponding to (1.2). This weaker formulation also goes under the name KPZ formula and is sometimes called the geometric KPZ formula. In this paper we use the terms KPZ formula and geometric KPZ formula interchangeably and we are only concerned with the formula that relates the two notions of dimension for random fractals.

  5. 5.

    One reason why it is natural for this ball volume exponent to coincide with the dimension of LQG is that the Minkowski dimension d of a metric space can be defined by the condition that the number of metric balls of radius \(\delta >0\) needed to cover a metric ball of radius 1 is of order \(\delta ^{-d}\). For M, the number of graph distance balls of radius 1 (i.e., singleton sets of vertices) needed to cover the ball of radius r is its cardinality.

  6. 6.

    To be more precise, [DZZ18, Section 5] shows that (1.19) holds for the variant of \(D_h^\epsilon \) where we replace the circle average by the truncated white-noise decomposition of the field (here we note that \(\chi = 2/d_{{{\mathbf {c}}_{\mathrm M}}}\) in the notation of [DZZ18], see [DG18]; and that the parameter \(\epsilon \) in [DZZ18] corresponds to \(\epsilon ^{2/\gamma }\) in our setting). One can compare this variant of \(D_h^\epsilon \) to \(D_h^\epsilon \) itself using Lemma 4.2 below.

  7. 7.

    Due to lattice effects of the dyadic tiling we do not expect the approximation (2.3) to converge exactly to the LQG measure of X as defined earlier in this subsection for all fixed choices of X. For example, the line segment \([0,1] \times \{0\}\) typically intersects approximately twice as many squares as the line segment \([0,1]\times \{r\}\) for \(r\in \mathbb {R}\setminus \mathbb {Q}\) close to 1, but these two line segments should have approximately the same LQG measure. However, we believe that certain variants of (2.3) do converge to the LQG measure of X, e.g. we can consider versions of the square subdivision where the set of possible boxes are translated by \(z\in [0,1]^2\) and average over z.

  8. 8.

    Here at the classical level the exponential term \(e^{\gamma \varphi }\) transforms correctly under the coordinate change provided that \(Q = \frac{2}{\gamma }\), but in the quantum case when \(\varphi \) is a GFF type distribution the correct value of Q is \( \frac{\gamma }{2} + \frac{2}{\gamma }\). See the coordinate change formula (2.2).

  9. 9.

    This object may only make sense as a distribution, not a (complex) measure; see [JSW18a] for the case of purely imaginary \(\gamma \).

  10. 10.

    For technical reasons, [DDDF19, GM19b] define LFPP using the convolution of h with the heat kernel rather than the circle average approximation but the scaling limit of both versions of LFPP should be the same.

  11. 11.

    Here we are using the fact that, if \(f: \mathbb {R}^+ \rightarrow \mathbb {R}\) is a continuous function that is increasing on (0, a) and decreasing on \((a,\infty )\), then the sum \(\sum _{n=1}^{\infty } f(n)\) is a lower Riemann sum for the integral of the function \(f^*\) that equals f on (0, a), the constant f(a) on \((a,a+1)\), and \(f(x-1)\) on \((a+1,\infty )\). Hence, \(\sum _{n=1}^{\infty } f(n) \le \int _0^{\infty } f^*(x) dx = \int _0^{\infty } f(x) dx + f(a)\).

  12. 12.

    The truncated white noise decomposition is called \(\eta \) in [DZZ18] and has a slightly more complicated definition than \(\widehat{h}^{\mathrm {tr}}\), but the same (in fact, a slightly easier) argument works in the case of \(\widehat{h}^{\mathrm {tr}}\).

  13. 13.

    The reason for considering \([1,2n-1]\times [1,n-1]\) instead of \(\mathcal R_n \) is so that if \(S\in \mathcal S(\mathcal R_n)\), then each of the four \(1\times 2\) or \(2\times 1\) rectangles with corners in \(\mathbb {Z}^2\) which contain S are contained in \(\mathcal R_n \).


  1. [AB14]

    Ambjörn, J., Budd, T.G.: Geodesic distances in Liouville quantum gravity. Nucl. Phys. B 889, 676–691 (2014). arXiv:1405.3424

  2. [ADF86]

    Ambjørn, J., Durhuus, B., Fröhlich, J.: The appearance of critical dimensions in regulated string theories. II. Nucl. Phys. B 275(2), 161–184 (1986)

  3. [ADH13]

    Abraham, R., Delmas, J.-F., Hoscheit, P.: A note on the Gromov–Hausdorff–Prokhorov distance between (locally) compact metric measure spaces. Electron. J. Probab. 18 14, 21 (2013). arXiv:1202.5464

  4. [ADJT93]

    Ambjørn, J., Durhuus, B., Jónsson, T., Thorleifsson, G.: Matter fields with \(c>1\) coupled to 2d gravity. Nucl. Phys. B 398, 568–592 (1993). arXiv:hep-th/9208030

  5. [Ald91a]

    Aldous, D.: The continuum random tree. I. Ann. Probab. 19(1), 1–28 (1991)

  6. [Ald91b]

    Aldous, D.: The continuum random tree. II. An overview. In Stochastic analysis (Durham, 1990), London Mathematical Society Lecture Note Series, vol. 167, pp. 23–70. Cambridge University Press, Cambridge (1991)

  7. [Ald93]

    Aldous, D.: The continuum random tree. III. Ann. Probab. 21(1), 248–289 (1993)

  8. [Amb94]

    Ambjørn, J.: Remarks about c \(>\) 1 and D \(>\) 2. Teoret. Mat. Fiz. 98(3), 326–336 (1994)

  9. [Ang19]

    Ang, M.: Comparison of discrete and continuum Liouville first passage percolation. ArXiv e-prints, Apr (2019). arXiv:1904.09285

  10. [Aru15]

    Aru, J.: KPZ relation does not hold for the level lines and \(\text{ SLE }_\kappa \) flow lines of the Gaussian free field. Probab. Theory Relat. Fields 163(3–4), 465–526 (2015). arXiv:1312.1324

  11. [Aru17]

    Aru, J.: Gaussian multiplicative chaos through the lens of the 2D Gaussian free field. ArXiv e-prints, Sept (2017). arXiv:1709.04355

  12. [BB19]

    Barkley, J., Budd, T.: Precision measurements of Hausdorff dimensions in two-dimensional quantum gravity. ArXiv e-prints, Aug (2019) arXiv:1908.09469

  13. [BD86]

    Billoire, A., David, F.: Scaling properties of randomly triangulated planar random surfaces: a numerical study. Nucl. Phys. B 275(4), 617–640 (1986)

  14. [Bef08]

    Beffara, V.: The dimension of the SLE curves. Ann. Probab. 36(4), 1421–1452 (2008). arXiv:math/0211322

  15. [Ber17]

    Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 22(27), 12 (2017). arXiv:1506.09113

  16. [BGRV16]

    Berestycki, N., Garban, C., Rhodes, R., Vargas, V.: KPZ formula derived from Liouville heat kernel. J. Lond. Math. Soc. (2) 94(1), 186–208 (2016). arXiv:1406.7280

  17. [BH92]

    Brézin, E., Hikami, S.: A naive matrix-model approach to 2D quantum gravity coupled to matter of arbitrary central charge. Phys. Lett. B 283, 203–208 (1992). arXiv:hep-th/9204018

  18. [BJ92]

    Baillie, C.F., Johnston, D.A.: A numerical test of Kpz scaling: Potts models coupled to two-dimensional quantum gravity. Mod. Phys. Lett. A 7, 1519–1533 (1992). arXiv:hep-lat/9204002

  19. [BJM14]

    Bettinelli, J., Jacob, E., Miermont, G.: The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection. Electron. J. Probab. 19(74), 16 (2014). arXiv:1312.5842

  20. [BJRV13]

    Barral, J., Jin, X., Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and KPZ duality. Commun. Math. Phys. 323(2), 451–485 (2013). arXiv:1202.5296

  21. [BKKM86]

    Boulatov, D.V., Kazakov, V.A., Kostov, I.K., Migdal, A.A.: Analytical and numerical study of a model of dynamically triangulated random surfaces. Nucl. Phys. B 275(4), 641–686 (1986)

  22. [BS09]

    Benjamini, I., Schramm, O.: KPZ in one dimensional random geometry of multiplicative cascades. Commun. Math. Phys. 289(2), 653–662 (2009). arXiv:0806.1347

  23. [Cat88]

    Cates, M.E.: The Liouville field theory of random surfaces: when is the bosonic string a branched polymer? EPL (Europhys. Lett.) 7, 719 (1988)

  24. [CKR92]

    Catterall, S., Kogut, J., Renken, R.: Numerical study of c \(>\) 1 matter coupled to quantum gravity. Phys. Lett. B 292, 277–282 (1992)

  25. [Cur16]

    Curien, N.: Peeling random planar maps. Notes du cours Peccot. Available at (2016). Accessed Mar 2019

  26. [Dav88]

    David, F.: Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod. Phys. Lett. A 3, 1651–1656 (1988)

  27. [Dav97]

    David, F.: A scenario for the c \(>\) 1 barrier in non-critical bosonic strings. Nucl. Phys. B 487, 633–649 (1997). arXiv:hep-th/9610037

  28. [DD18]

    Ding, J., Dunlap, A.: Subsequential scaling limits for Liouville graph distance. ArXiv e-prints, Dec (2018). arXiv:1812.06921

  29. [DDDF19]

    Ding, J., Dubédat, J., Dunlap, A., Falconet, H.: Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\). ArXiv e-prints, Apr (2019). arXiv:1904.08021

  30. [DFG+19]

    Dubédat, J., Falconet, H., Gwynne, E., Pfeffer, J., Sun, X.: Weak LQG metrics and Liouville first passage percolation. ArXiv e-prints, May (2019). arXiv:1905.00380

  31. [DFJ84]

    Durhuus, B., Frohlich, J., Jonsson, T.: Critical behavior in a model of planar random surfaces. Nucl. Phys. B 240, 453 (1984). [Phys. Lett.137B,93(1984)]

  32. [DG16]

    Ding, J., Goswami, S.: Upper bounds on Liouville first passage percolation and Watabiki’s prediction. Commun. Pure Appl. Math., to appear (2016). arXiv:1610.09998

  33. [DG18]

    Ding, J., Gwynne, E.: The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds. Commun. Math. Phys., to appear (2018). arXiv:1807.01072

  34. [DJKP87]

    David, F., Jurkiewicz, J., Krzywicki, A., Petersson, B.: Critical exponents in a model of dynamically triangulated random surfaces. Nucl. Phys. B 290, 218–230 (1987)

  35. [DK89]

    Distler, J., Kawai, H.: Conformal field theory and 2D quantum gravity. Nucl. Phys. B 321, 509–527 (1989)

  36. [DKRV16]

    David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342(3), 869–907 (2016). arXiv:1410.7318

  37. [DL18]

    Ding, J., Li, L.: Chemical distances for percolation of planar Gaussian free fields and critical random walk loop soups. Commun. Math. Phys. 360(2), 523–553 (2018). arXiv:1605.04449

  38. [DMS14]

    Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees. ArXiv e-prints, Sept (2014). arXiv:1409.7055

  39. [DO94]

    Dorn, H., Otto, H.-J.: Two- and three-point functions in Liouville theory. Nucl. Phys. B 429, 375–388 (1994). arXiv:hep-th/9403141

  40. [DP86]

    D’Hoker, E., Phong, D.H.: Multiloop amplitudes for the bosonic Polyakov string. Nucl. Phys. B 269(1), 205–234 (1986)

  41. [DRSV14a]

    Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Critical Gaussian multiplicative chaos: convergence of the derivative martingale. Ann. Probab. 42(5), 1769–1808 (2014). arXiv:1206.1671

  42. [DRSV14b]

    Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Commun. Math. Phys. 330(1), 283–330 (2014). arXiv:1212.0529

  43. [DRV16]

    David, F., Rhodes, R., Vargas, V.: Liouville quantum gravity on complex tori. J. Math. Phys. 57(2), 022302 (2016). arXiv:1504.00625

  44. [DS11]

    Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011). arXiv:1206.0212

  45. [DS19]

    Dubédat, J., Shen, H.: Stochastic Ricci flow on compact surfaces. ArXiv e-prints, Apr (2019). arXiv:1904.10909

  46. [Dup10]

    Duplantier, B.: A rigorous perspective on Liouville quantum gravity and the KPZ relation. In: Jacobsen, J., Ouvry, S., Pasquier, V., Serban, D., Cugliandolo, L. (eds.) Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing, pp. 529–561. Oxford University Press, Oxford (2010)

  47. [DZZ18]

    Ding, J., Zeitouni, O., Zhang, F.: Heat kernel for Liouville Brownian motion and Liouville graph distance. Commun. Math. Phys., to appear (2018). arXiv:1807.00422

  48. [FK02]

    Faddeev, L.D., Kashaev, R.M.: Strongly coupled quantum discrete Liouville theory: II. Geometric interpretation of the evolution operator. J. Phys. Math. Gen. 35, 4043–4048 (2002). arXiv:hep-th/0201049

  49. [FKV01]

    Faddeev, L.D., Kashaev, R.M., Volkov, A.Y.: Strongly coupled quantum discrete Liouville theory. I: algebraic approach and duality. Commun. Math. Phys. 219, 199–219 (2001). arXiv:hep-th/0006156

  50. [Gar18]

    Garban, C.: Dynamical Liouville. ArXiv e-prints, May (2018). arXiv:1805.04507

  51. [GGN13]

    Gurel-Gurevich, O., Nachmias, A.: Recurrence of planar graph limits. Ann. Math. (2) 177(2), 761–781 (2013). arXiv:1206.0707

  52. [GHM15]

    Gwynne, E., Holden, N., Miller, J.: An almost sure KPZ relation for SLE and Brownian motion. Ann. Probab., to appear (2015). arXiv:1512.01223

  53. [GHS17]

    Gwynne, E., Holden, N., Sun, X.: A mating-of-trees approach for graph distances in random planar maps. ArXiv e-prints, Nov (2017). arXiv:1711.00723

  54. [GHS19]

    Gwynne, E., Holden, N., Sun, X.: Mating of trees for random planar maps and Liouville quantum gravity: a survey. ArXiv e-prints, Oct (2019). arXiv:1910.04713

  55. [GM17]

    Gwynne, E., Miller, J.: Characterizations of \(\text{ SLE }_{\kappa }\) for \(\kappa \in (4,8)\) on Liouville quantum gravity. ArXiv e-prints, Jan (2017). arXiv:1701.05174

  56. [GM19a]

    Gwynne, E., Miller, J.: Conformal covariance of the Liouville quantum gravity metric for \(\gamma \in (0,2)\). ArXiv e-prints, May (2019). arXiv:1905.00384

  57. [GM19b]

    Gwynne, E., Miller, J.: Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\). ArXiv e-prints, May (2019). arXiv:1905.00383

  58. [GMS17]

    Gwynne, E., Miller, J., Sheffield, S.: The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity. ArXiv e-prints, May (2017). arXiv:1705.11161

  59. [GMS18]

    Gwynne, E., Miller, J., Sheffield, S.: An invariance principle for ergodic scale-free random environments. ArXiv e-prints, July (2018). arXiv:1807.07515

  60. [GP19a]

    Gwynne, E., Pfeffer, J.: Bounds for distances and geodesic dimension in Liouville first passage percolation. Electron. Commun. Probab. 24(56), 12 (2019). arXiv:1903.09561

  61. [GP19b]

    Gwynne, E., Pfeffer, J.: KPZ formulas for the Liouville quantum gravity metric. ArXiv e-prints, May (2019). arXiv:1905.11790

  62. [GRV16]

    Guillarmou, C., Rhodes, R., Vargas, V.: Polyakov’s formulation of 2d bosonic string theory. ArXiv e-prints, July (2016). arXiv:1607.08467

  63. [Gwy19]

    Gwynne, E.: The dimension of the boundary of a Liouville quantum gravity metric ball. arXiv e-prints, Sept (2019). arXiv:1909.08588

  64. [HMP10]

    Hu, X., Miller, J., Peres, Y.: Thick points of the Gaussian free field. Ann. Probab. 38(2), 896–926 (2010). arXiv:0902.3842

  65. [HRV18]

    Huang, Y., Rhodes, R., Vargas, V.: Liouville quantum gravity on the unit disk. Ann. Inst. Henri Poincaré Probab. Stat. 54(3), 1694–1730 (2018). arXiv:1502.04343

  66. [HS19]

    Holden, N., Sun, X.: Convergence of uniform triangulations under the Cardy embedding. ArXiv e-prints, May (2019). arXiv:1905.13207

  67. [Hua18]

    Huang, Y.: Path integral approach to analytic continuation of Liouville theory: the pencil region. ArXiv e-prints, Sept (2018). arXiv:1809.08650

  68. [IJS16]

    Ikhlef, Y., Jacobsen, J.L., Saleur, H.: Three-point functions in \(c\le 1\) Liouville theory and conformal loop ensembles. Phys. Rev. Lett. 116, 130601 (2016)

  69. [JSW18a]

    Junnila, J., Saksman, E., Webb, C.: Imaginary multiplicative chaos: moments, regularity and connections to the Ising model. ArXiv e-prints, June (2018). arXiv:1806.02118

  70. [JSW18b]

    Junnila, J., Saksman, E., Webb, C.: Decompositions of log-correlated fields with applications. ArXiv e-prints, Aug (2018). arXiv:1808.06838

  71. [Kah85]

    Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

  72. [KL13]

    Kennedy, T., Lawler, G.F.: Lattice effects in the scaling limit of the two-dimensional self-avoiding walk. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics, volume 601 of Contemporary Mathematics, pp. 195–210. American Mathematical Society, Providence, RI (2013). arXiv:1109.3091

  73. [Kle95]

    Klebanov, I.R.: Touching random surfaces and Liouville gravity. Phys. Rev. D 51, 1836–1841 (1995). arXiv:hep-th/9407167

  74. [KPZ88]

    Knizhnik, V., Polyakov, A., Zamolodchikov, A.: Fractal structure of 2D-quantum gravity. Mod. Phys. Lett A 3(8), 819–826 (1988)

  75. [KRV15]

    Kupiainen, A., Rhodes, R., Vargas, V.: Local conformal structure of Liouville quantum gravity. ArXiv e-prints, Dec (2015). arXiv:1512.01802

  76. [KRV17]

    Kupiainen, A., Rhodes, R., Vargas, V.: Integrability of Liouville theory: proof of the DOZZ Formula. Ann. Math., to appear (2017). arXiv:1707.08785

  77. [Le13]

    Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013). arXiv:1105.4842

  78. [Le14]

    Le Gall, J.-F.: Random geometry on the sphere. In: Proceedings of the ICM (2014). arXiv:1403.7943

  79. [LR15]

    Lawler, G.F., Rezaei, M.A.: Minkowski content and natural parameterization for the Schramm–Loewner evolution. Ann. Probab. 43(3), 1082–1120 (2015). arXiv:1211.4146

  80. [LRV13]

    Lacoin, H., Rhodes, R., Vargas, V.: Complex Gaussian multiplicative chaos. ArXiv e-prints, July (2013). arXiv:1307.6117

  81. [LRV19]

    Lacoin, H., Rhodes, R., Vargas, V.: A probabilistic approach of ultraviolet renormalisation in the boundary Sine–Gordon model. ArXiv e-prints, Mar (2019). arXiv:1903.01394

  82. [Mie13]

    Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013). arXiv:1104.1606

  83. [Mie14]

    Miermont, G.: Aspects of random maps. St. Flour Lecture Notes. Available at (2014). Accessed Mar 2019

  84. [MS15]

    Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric. Invent. Math., to appear (2015). arXiv:1507.00719

  85. [MS16a]

    Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. ArXiv e-prints, May (2016). arXiv:1605.03563

  86. [MS16b]

    Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III: the conformal structure is determined. ArXiv e-prints, Aug (2016). arXiv:1608.05391

  87. [MS16c]

    Miller, J., Sheffield, S.: Imaginary geometry I: interacting SLEs. Probab. Theory Relat. Fields 164(3–4), 553–705 (2016). arXiv:1201.1496

  88. [MS17]

    Miller, J., Sheffield, S.: Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Relat. Fields 169(3–4), 729–869 (2017). arXiv:1302.4738

  89. [MS19]

    Miller, J., Sheffield, S.: Liouville quantum gravity spheres as matings of finite-diameter trees. Ann. Inst. Henri Poincaré Probab. Stat. 55(3), 1712–1750 (2019). arXiv:1506.03804

  90. [Pol81]

    Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103(3), 207–210 (1981)

  91. [Rem18]

    Remy, G.: Liouville quantum gravity on the annulus. J. Math. Phys. 59(8), 082303 (2018). arXiv:1711.06547

  92. [Rib14]

    Ribault, S.: Conformal field theory on the plane. ArXiv e-prints, June (2014). arXiv:1406.4290

  93. [Rib18]

    Ribault S (2018) Minimal lectures on two-dimensional conformal field theory. SciPost Phys. Lect. Notes 1.,

  94. [RS15]

    Ribault, S., Santachiara, R.: Liouville theory with a central charge less than one. J. High Energy Phys. 2015(8), 109 (2015)

  95. [RV11]

    Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358–371 (2011). arXiv:0807.1036

  96. [RV14]

    Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014). arXiv:1305.6221

  97. [She07]

    Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3–4), 521–541 (2007). arXiv:math/0312099

  98. [She16]

    Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44(5), 3474–3545 (2016). arXiv:1012.4797

  99. [SS13]

    Schramm, O., Sheffield, S.: A contour line of the continuum Gaussian free field. Probab. Theory Relat. Fields 157(1–2), 47–80 (2013). arXiv:math/0605337

  100. [Suz97]

    Suzuki, T.: A note on quantum liouville theory via the quantum group an approach to strong coupling liouville theory. Nucl. Phys. B 492(3), 717–742 (1997)

  101. [Tes04]

    Teschner, J.: A lecture on the Liouville vertex operators. Int. J. Mod. Phys. A 19(supp02), 436–458 (2004)

  102. [Wat93]

    Watabiki, Y.: Analytic study of fractal structure of quantized surface in two-dimensional quantum gravity. Prog. Theor. Phys. Suppl. 114, 1–17 (1993). Quantum gravity (Kyoto, 1992)

  103. [Zam05]

    Zamolodchikov, A.B.: Three-point function in the minimal Liouville gravity. Theor. Math. Phys. 142(2), 183–196 (2005)

  104. [ZZ96]

    Zamolodchikov, A., Zamolodchikov, A.: Conformal bootstrap in Liouville field theory. Nucl. Phys. B 477, 577–605 (1996). arXiv:hep-th/9506136

Download references


We are grateful to several individuals for helpful discussions, including Timothy Budd, Jian Ding, Bertrand Duplantier, Antti Kupiainen, Greg Lawler, Eveliina Peltola, Rémi Rhodes, Scott Sheffield, Xin Sun, and Vincent Vargas. We thank Scott Sheffield for suggesting the idea of using square subdivisions to approximate LQG for \({{\mathbf {c}}_{\mathrm M}}\in (1,25)\). We also thank the anonymous referee for numerous helpful suggestions and comments. E.G. was partially supported by a Herchel Smith fellowship and a Trinity College junior research fellowship. N.H. was supported by Dr. Max Rössler, the Walter Haefner Foundation, and the ETH Zürich Foundation. G.R. was partially supported by a National Science Foundation mathematical sciences postdoctoral research fellowship. J.P. was partially supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374.

Author information

Correspondence to Nina Holden.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gwynne, E., Holden, N., Pfeffer, J. et al. Liouville Quantum Gravity with Matter Central Charge in (1, 25): A Probabilistic Approach. Commun. Math. Phys. (2020).

Download citation