Entanglement Entropy and Berezin–Toeplitz Operators

  • Laurent CharlesEmail author
  • Benoit Estienne


We consider Berezin–Toeplitz operators on compact Kähler manifolds whose symbols are characteristic functions. When the support of the characteristic function has a smooth boundary, we prove a two-term Weyl law, the second term being proportional to the Riemannian volume of the boundary. As a consequence, we deduce the area law for the entanglement entropy of integer quantum Hall states. Another application is for the determinantal processes with correlation kernel the Bergman kernels of a positive line bundle: we prove that the number of points in a smooth domain is asymptotically normal.



The authors would like to express their warm gratitude to Benoît Douçot for bringing about this collaboration and for pointing out that the IQH entanglement entropy can be computed in terms of the spectrum of a convenient Toeplitz operator. B.E. also thanks Nicolas Regnault and Semyon Klevtsov for valuable discussions.


  1. [AFOV08]
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Modern Phys. 80(2), 517–576 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [AHM11]
    Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159(1), 31–81 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. [AI08]
    Abanov, A.G., Ivanov, D.A.: Allowed charge transfers between coherent conductors driven by a time-dependent scatterer. Phys. Rev. Lett. 100, 086602 (2008)ADSCrossRefGoogle Scholar
  4. [Bas86]
    Basor, E.L.: Trace formulas for Toeplitz matrices with piecewise continuous symbols. J. Math. Anal. Appl. 120(1), 25–38 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [BdMS76]
    Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegő. In: Journées: Équations aux Dérivées Partielles de Rennes (1975), vol. 34–35. Astérisque, Paris, pp. 123–164 (1976)Google Scholar
  6. [Ber03]
    Berndtsson, B.O.: Bergman kernels related to Hermitian line bundles over compact complex manifolds. In: Explorations in Complex and Riemannian Geometry, Volume 332 of Contemporary Mathematics, pp. 1–17 (2003)Google Scholar
  7. [Ber08]
    Berman, R.J.: Determinantal point processes and fermions on complex manifolds: Bulk universality (2008). arxiv:0811.3341
  8. [Ber14]
    Berman, R.J.: Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. Commun. Math. Phys. 327(1), 1–47 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [BGV04]
    Berline, N.: Getzler, Ezra, Vergne, Michèle: Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer, Berlin (2004). Corrected reprint of the 1992 originalGoogle Scholar
  10. [BLPY16]
    Busch, P., Lahti, P., Pellonpää, J.-P., Ylinen, K.: Quantum Measurement. Theoretical and Mathematical Physics. Springer, Berlin (2016)zbMATHCrossRefGoogle Scholar
  11. [BW83]
    Basor, E., Widom, H.: Toeplitz and Wiener–Hopf determinants with piecewise continuous symbols. J. Funct. Anal. 50(3), 387–413 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [Cha03]
    Charles, L.: Berezin–Toeplitz operators, a semi-classical approach. Comm. Math. Phys. 239(1–2), 1–28 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [Dem96]
    Demailly, J.-P: \(L^2\)-estimates for the \(\overline{\partial }\) operator on complex manifolds. Note de cours, Ecole d’été de mathématiques à l’institut Fourier (Grenoble) (1996)Google Scholar
  14. [DK10]
    Douglas, M.R., Klevtsov, S.: Bergman kernel from path integral. Commun. Math. Phys. 293(1), 205–230 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [DMFN02]
    De Mari, F., Feichtinger, H.G., Nowak, K.: Uniform eigenvalue estimates for time-frequency localization operators. J. Lond. Math. Soc. (2) 65(3), 720–732 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. [ECP10]
    Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Modern Phys. 82(1), 277–306 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [Eza08]
    Ezawa, Z.F.: Quantum Hall Effects, 2nd edn. World Scientific Publishing Co. Pte. Ltd., Hackensack (2008). Field theoretical approach and related topicszbMATHCrossRefGoogle Scholar
  18. [Gio06]
    Gioev, D.: Szegö limit theorem for operators with discontinuous symbols and applications to entanglement entropy. Int. Math. Res. Not. (2006)Google Scholar
  19. [GK06]
    Gioev, D., Klich, I.: Entanglement entropy of fermions in any dimension and the Widom conjecture. Phys. Rev. Lett. 96(10), 100503 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. [HKPV06]
    Ben Hough, J., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. [HLS11]
    Helling, R., Leschke, H., Spitzer, W.: A special case of a conjecture by Widom with implications to fermionic entanglement entropy. Int. Math. Res. Not. IMRN 7, 1451–1482 (2011)MathSciNetzbMATHGoogle Scholar
  22. [HR06]
    Haroche, S., Raimond, J.-M.: Exploring the Quantum. Oxford Graduate Texts. Oxford University Press, Oxford (2006). Atoms, cavities and photonszbMATHCrossRefGoogle Scholar
  23. [HW08]
    Hairer, E., Wanner, G.: Analysis by Its History. Undergraduate Texts in Mathematics. Springer, New York (2008)zbMATHCrossRefGoogle Scholar
  24. [Kle14]
    Klevtsov, S.: Random normal matrices, Bergman kernel and projective embeddings. J. High Energy Phys. 2014(1), 133 (2014)MathSciNetCrossRefGoogle Scholar
  25. [Kle16]
    Klevtsov, S.: Geometry and large \(N\) limits in Laughlin states. In: Travaux mathématiques, vol XXIV. Faculty of Science, Technology and Communication University Luxembourg, Luxembourg, pp. 63–127 (2016)Google Scholar
  26. [Kli06]
    Klich, I.: Lower entropy bounds and particle number fluctuations in a Fermi sea. J. Phys. A 39(4), L85–L91 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [Kor18]
    Kordyukov, Y.A.: On asymptotic expansions of generalized Bergman kernels on symplectic manifolds. Algebra i Analiz 30(2), 163–187 (2018)MathSciNetGoogle Scholar
  28. [Lin01]
    Lindholm, N.: Sampling in weighted \(L^p\) spaces of entire functions in \(\mathbb{C}^n\) and estimates of the Bergman kernel. J. Funct. Anal. 182(2), 390–426 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  29. [LS18]
    Leblé, T., Serfaty, S.: Fluctuations of two dimensional coulomb gases. Geom. Funct. Anal. 28, 443–508 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  30. [LSS16]
    Leschke, H., Sobolev, A.V., Spitzer, W.: Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature. J. Phys. A 49(30), 30LT04 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  31. [LSS17]
    Leschke, H., Sobolev, A.V., Spitzer, W.: Trace formulas for Wiener–Hopf operators with applications to entropies of free fermionic equilibrium states. J. Funct. Anal. 273(3), 1049–1094 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  32. [LW80]
    Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77(2), 469–481 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  33. [MM07]
    Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels, Volume 254 of Progress in Mathematics. Birkhäuser Verlag, Basel (2007)Google Scholar
  34. [Old15]
    Oldfield, J.P.: Two-term Szegö theorem for generalised anti-Wick operators. J. Spectr. Theory 5(4), 751–781 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  35. [PE09]
    Peschel, I., Eisler, V.: Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A 42(50), 504003 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  36. [Pes03]
    Peschel, I.: Calculation of reduced density matrices from correlation functions. J. Phys. A 36(14), L205–L208 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [Pol18]
    Polterovich, L.: Inferring topology of quantum phase space. J. Appl. Comput. Topol. 2, 61–82 (2018). With an appendix by L. CharlesMathSciNetzbMATHCrossRefGoogle Scholar
  38. [PU18]
    Pérez-Esteva, S., Uribe, A.: Szegö Limit theorems for singular Berezin–Toeplitz operators (2018). arXiv:1801.00366
  39. [RS09]
    Rodríguez, I.D., Sierra, G.: Entanglement entropy of integer quantum hall states. Phys. Rev. B 80, 153303 (2009)ADSCrossRefGoogle Scholar
  40. [RS10]
    Rodríguez, I.D., Sierra, G.: Entanglement entropy of integer quantum hall states in polygonal domains. J. Stat. Mech. Theory Exp. 2010(12), P12033 (2010)MathSciNetCrossRefGoogle Scholar
  41. [Ser17]
    Serfaty, S.: Systems of points with Coulomb interactions. Eur. Math. Soc. Newsl. No. 110 (2018), 16–21MathSciNetzbMATHCrossRefGoogle Scholar
  42. [Sim15]
    Simon, B.: Real Analysis. A Comprehensive Course in Analysis, Part 1. American Mathematical Society, Providence (2015). With a 68 page companion bookletzbMATHCrossRefGoogle Scholar
  43. [Sob13]
    Sobolev, A.V.: Pseudo-differential operators with discontinuous symbols: Widom’s conjecture. Mem. Amer. Math. Soc. 222(1043), vi+104 (2013)MathSciNetzbMATHGoogle Scholar
  44. [Tao12]
    Tao, T.: Topics in Random Matrix Theory, Volume 132 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2012)CrossRefGoogle Scholar
  45. [Wid82]
    Widom, H.: On a class of integral operators with discontinuous symbol. In: Toeplitz Centennial (Tel Aviv, 1981), Volume 4 of Operator Theory: Advances and Applications. Birkhäuser, Basel-Boston, pp. 477–500 (1982)CrossRefGoogle Scholar
  46. [Zel98]
    Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)zbMATHCrossRefGoogle Scholar
  47. [ZZ17]
    Zelditch, S., Zhou, P.: Central Limit theorem for spectral Partial Bergman kernels (2017). arXiv:1708.09267

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques de Jussieu-Paris Rive GaucheIMJ-PRG, Sorbonne UniversitéParisFrance
  2. 2.Laboratoire de Physique Théorique et Hautes ÉnergiesLPTHE, Sorbonne UniversitéParisFrance

Personalised recommendations