Maximal Fluctuations on Periodic Lattices: An Approach via Quantitative Wulff Inequalities

  • Marco CicaleseEmail author
  • Gian Paolo Leonardi


We consider the Wulff problem arising from the study of the Heitmann–Radin energy of N atoms sitting on a periodic lattice. Combining the sharp quantitative Wulff inequality in the continuum setting with a notion of quantitative closeness between discrete and continuum energies, we provide very short proofs of fluctuation estimates of Voronoi-type sets associated with almost minimizers of the discrete problem about the continuum limit Wulff shape. In the particular case of exact energy minimizers, we recover the well-known, sharp \(N^{3/4}\) scaling law for all considered planar lattices, as well as a sub-optimal scaling law for the cubic lattice in dimension \(d\ge 3\).



The work of MC was partially supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics”. GP has been partially supported by the INdAM-GNAMPA Project 2019 "Problemi isoperimetrici in spazi euclidei e non". Part of this work was carried out while GP was visiting the department of mathematics of TUM, whose hospitality is gratefully acknowledged.


  1. 1.
    Au Yeung, Y., Friesecke, G., Schmidt, B.: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape. Calc. Var. Partial Differ. Equ. 44(1–2), 81–100 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322, 515–557 (2013)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cicalese, M., Leonardi, G.P.: A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206(2), 617–643 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Davoli, E., Piovano, P., Stefanelli, U.: Wulff shape emergence in graphene. Math. Mod. Methods. Appl. Sci. 26(12), 2277–2310 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Davoli, E., Piovano, P., Stefanelli, U.: Sharp \(N^{3/4}\) law for the minimizers of the edge-isoperimetric problem on the triangular lattice. J. Nonlinear Sci. 27(2), 627–660 (2017)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Del Nin, G.: Some asymptotic results on the global shape of planar clusters. Ph.D. thesis (forthcoming)Google Scholar
  8. 8.
    De Luca, L., Friesecke, G.: Crystallization in two dimensions and a discrete Gauss–Bonnet theorem. J. Nonlinear Sci. 28(1), 69–90 (2018)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    De Luca, L., Friesecke, G.: Classification of particle numbers with unique Heitmann-Radin minimizer. J. Stat. Phys. 167(6), 1586–1592 (2017)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Weinan, E., Li, D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286(3), 1099–1140 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. math. 182, 167 (2010)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Flatley, L.C., Tarasov, A., Taylor, M., Theil, F.: Packing twelve spherical caps to maximize tangencies. J. Comput. Appl. Math. 254, 220–225 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Flatley, L.C., Theil, F.: Face-centered cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 218(1), 363–416 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. Sect. A 119, 125–136 (1991)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Friedrich, M., Kreutz, L.: Crystallization in the hexagonal lattice for ionic dimers, Math. Models Methods Appl. Sci. (M3AS), to appear. Preprint arXiv:1808.10675
  16. 16.
    Friedrich, M., Kreutz, L.: Finite crystallization and wulff shape emergence for ionic compounds in the square lattice (2019). arXiv preprint arXiv:1903.00331
  17. 17.
    Friesecke, G., Theil, F.: Molecular Geometry Optimization, Models, Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2015)Google Scholar
  18. 18.
    Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Harborth, H.: Lösung zu Problem 664A. Elem. Math. 29, 14–15 (1974)Google Scholar
  20. 20.
    Heitmann, R.C., Radin, C.: The ground states for sticky discs. J. Stat. Phys. 22(3), 281–287 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Nonlinearity 27, 717–737 (2014)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Mainini, E., Piovano, P., Stefanelli, U.: Finite crystallization in the square lattice. Commun. Math. Phys. 328(2), 545–571 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Mainini, E., Piovano, P., Schmidt, B., Stefanelli, U.: \(N^{3/4}\) law in the cubic lattice (preprint )(2018).
  24. 24.
    Schmidt, B.: Ground states of the 2D sticky disc model: fine properties and \(N^{3/4}\) law for the deviation from the asymptotic Wulff shape. J. Stat. Phys. 153(4), 727–738 (2013)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Taylor, J.: Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symp. Pure Math. AMS 27, 419–427 (1975)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Wales, D.J.: Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zentrum Mathematik - M7Technische Universität MünchenGarchingGermany
  2. 2.Department of MathematicsUniversity of TrentoPovoItaly

Personalised recommendations