Advertisement

Diffusion Limit for a Slow-Fast Standard Map

  • Alex BlumenthalEmail author
  • Jacopo De Simoi
  • Ke Zhang
Article
  • 22 Downloads

Abstract

Consider the map \((x, z) \mapsto (x + \epsilon ^{-\alpha } \sin (2\pi x) + \epsilon ^{-(1+\alpha )}z, z + \epsilon \sin (2\pi x))\), which is conjugate to the Chirikov standard map with a large parameter. The parameter value \(\alpha = 1\) is related to “scattering by resonance” phenomena. For suitable \(\alpha \), we obtain a central limit theorem for the slow variable z for a (Lebesgue) random initial condition. The result is proved by conjugating to the Chirikov standard map and utilizing the formalism of standard pairs. Our techniques also yield for the Chirikov standard map a related limit theorem and a “finite-time” decay of correlations result.

Notes

Acknowledgements

The authors wish to thank the anonymous referees for their comments and suggestions which substantially improved the readability of this paper.

References

  1. 1.
    Aubry, S., Le Daeron, P.Y.: The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D 8(3), 381–422 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berger, P., Turaev, D.: On Herman’s positive entropy conjecture. arXiv preprint arXiv:1704.02473 (2017)
  3. 3.
    Blumenthal, A.: Statistical properties for compositions of standard maps with increasing coefficent. arXiv preprint arXiv:1710.09058 (2017)
  4. 4.
    Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 264–379 (1979)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Crisanti, A., Falcioni, M., Vulpiani, A., Paladin, G.: Lagrangian chaos: transport, mixing and diffusion in fluids. La Riv. Nuovo Cimento (1978–1999) 14(12), 1–80 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    De Simoi, J.: Stability and instability results in a model of Fermi acceleration. Discrete Contin. Dyn. Syst. 25(3), 719–750 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dolgopyat, D.: Limit theorems for partially hyperbolic systems. Trans. Am. Math. Soc. 356(4), 1637–1689 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dolgopyat, D.: On differentiability of SRB states for partially hyperbolic systems. Invent. Math. 155(2), 389–449 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dolgopyat, D.: Repulsion from Resonances. Société Mathématique de France, Paris (2012)CrossRefGoogle Scholar
  10. 10.
    Duarte, P.: Plenty of elliptic islands for the standard family of area preserving maps. Annales de l’I.H.P. Analyse non linéaire 11(4), 359–409 (1994) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Frenkel, J., Kontorova, T.: On the theory of plastic deformation and twinning. Acad. Sci. USSR J. Phys. 1, 137–149 (1939)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gorodetski, A.: On stochastic sea of the standard map. Commun. Math. Phys. 309(1), 155–192 (2012)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Izraelev, F.M.: Nearly linear mappings and their applications. Phys. D 1(3), 243–266 (1980)MathSciNetCrossRefGoogle Scholar
  14. 14.
    McLeish, D.L.: Dependent central limit theorems and invariance principles. Ann. Probab. 2, 620–628 (1974)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Neishtadt, A.I.: Passage through a separatrix in a resonance problem with a slowly-varying parameter: PMM vol. 39, n 4, 1975, pp. 621–632. J. Appl. Math. Mech. 39(4), 594–605 (1975)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Neishtadt, A.I.: Averaging and passage through resonances. In: Proceedings of the International Congress of Mathematicians, Kyoto, Japan, pp. 1271–1283 (1990)Google Scholar
  17. 17.
    Neishtadt, A.I.: Scattering by resonances. Celest. Mech. Dyn. Astron. 65(1–2), 1–20 (1996)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Pustylnikov, L.D.: Stable and oscillating motions in nonautonomous dynamical systems. A generalization of C. L. Siegel’s theorem to the nonautonomous case. Mat. Sb. (N.S.) 94(136), 407–429, 495 (1974)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations