Communications in Mathematical Physics

, Volume 372, Issue 3, pp 797–864 | Cite as

Generalizations of TASEP in Discrete and Continuous Inhomogeneous Space

  • Alisa Knizel
  • Leonid PetrovEmail author
  • Axel Saenz


We investigate a rich new class of exactly solvable particle systems generalizing the Totally Asymmetric Simple Exclusion Process (TASEP). Our particle systems can be thought of as new exactly solvable examples of tandem queues, directed first- or last-passage percolation models, or Robinson–Schensted–Knuth type systems with random input. One of the novel features of the particle systems is the presence of spatial inhomogeneity which can lead to the formation of traffic jams. For systems with special step-like initial data, we find explicit limit shapes, describe hydrodynamic evolution, and obtain asymptotic fluctuation results which put the systems into the Kardar–Parisi–Zhang universality class. At a critical scaling around a traffic jam in the continuous space TASEP, we observe deformations of the Tracy–Widom distribution and the extended Airy kernel, revealing the finer structure of this novel type of phase transitions. A homogeneous version of a discrete space system we consider is a one-parameter deformation of the geometric last-passage percolation, and we obtain extensions of the limit shape parabola and the corresponding asymptotic fluctuation results. The exact solvability and asymptotic behavior results are powered by a new nontrivial connection to Schur measures and processes.



We are grateful to Guillaume Barraquand, Riddhipratim Basu, Alexei Borodin, Eric Cator, Francis Comets, Ivan Corwin, Patrik Ferrari, Vadim Gorin, Pavel Krapivsky, Alexander Povolotsky, Timo Seppäläinen, and Jon Warren for helpful discussions. A part of the work was completed when the authors attended the 2017 IAS PCMI Summer Session on Random Matrices, and we are grateful to the organizers for the hospitality and support. AK was partially supported by the NSF Grant DMS-1704186. LP was partially supported by the NSF grant DMS-1664617.

Supplementary material


  1. [Agg18]
    Aggarwal, A.: Current fluctuations of the stationary ASEP and six-vertex model. Duke Math J. 167(2), 269–384 (2018). arXiv:1608.04726 [math.PR]MathSciNetzbMATHGoogle Scholar
  2. [And82]
    Andjel, E.: Invariant measures for the zero range process. Ann. Probab. 10(3), 525–547 (1982)MathSciNetzbMATHGoogle Scholar
  3. [AG05]
    Andjel, E., Guiol, H.: Long-range exclusion processes, generator and invariant measures. Ann. Probab. 33(6), 2314–2354 (2005). arXiv:math/0411655 [math.PR]MathSciNetzbMATHGoogle Scholar
  4. [AK84]
    Andjel, E., Kipnis, C.: Derivation of the hydrodynamical equation for the zero-range interaction process. Ann. Probab. 12(2), 325–334 (1984)MathSciNetzbMATHGoogle Scholar
  5. [Bai06]
    Baik, J.: Painlevé formulas of the limiting distributions for nonnull complex sample covariance matrices. Duke Math J. 133(2), 205–235 (2006). arXiv:math/0504606 [math.PR]MathSciNetzbMATHGoogle Scholar
  6. [BBP05]
    Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33(5), 1643–1697 (2005). arXiv:math/0403022 [math.PR]MathSciNetzbMATHGoogle Scholar
  7. [BDJ99]
    Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. AMS 12(4), 1119–1178 (1999). arXiv:math/9810105 [math.CO]MathSciNetzbMATHGoogle Scholar
  8. [BKS12]
    Balász, M., Komjáthy, J., Seppäläinen, T.: Microscopic concavity and fluctuation bounds in a class of deposition processes. Ann. Inst. H. Poincaré B 48, 151–187 (2012)ADSMathSciNetzbMATHGoogle Scholar
  9. [Bar15]
    Barraquand, G.: A phase transition for q-TASEP with a few slower particles. Stoch. Process. Appl. 125(7), 2674–2699 (2015). arXiv:1404.7409 [math.PR]MathSciNetzbMATHGoogle Scholar
  10. [Bar01]
    Baryshnikov, Yu.: GUEs and queues. Probab. Theory Relat. Fields 119, 256–274 (2001)MathSciNetzbMATHGoogle Scholar
  11. [BSS17]
    Basu, R., Sarkar, S., Sly, A.: Invariant measures for TASEP with a slow bond (2017). arXiv preprint arXiv:1704.07799
  12. [BSS14]
    Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of the slow bond problem (2014). arXiv preprint arXiv:1408.3464 [math.PR]
  13. [BNKR94]
    Ben-Naim, E., Krapivsky, P., Redner, S.: Kinetics of clustering in traffic flows. Phys. Rev. E. 50(2), 822–829 (1994). arXiv:cond-mat/9402054 ADSGoogle Scholar
  14. [Ben+99]
    Bengrine, M., Benyoussef, A., Ez-Zahraouy, H., Krug, J., Loulidi, M., Mhirech, F.: A simulation study of an asymmetric exclusion model with disorder. MJ Condens. Matter 2(1), 117–126 (1999)Google Scholar
  15. [Bla11]
    Blank, M.: Exclusion-type spatially heterogeneous processes in continua. J. Stat. Mech. 2011(06), P06016 (2011). arXiv:1105.4232 [math.DS]Google Scholar
  16. [Bla12]
    Blank, M.: Discrete time TASEP in heterogeneous continuum. Markov Process. Relat. Fields 18(3), 531–552 (2012)MathSciNetzbMATHGoogle Scholar
  17. [Bor10]
    Bornemann, Folkmar: On the numerical evaluation of Fredholm determinants. Math. Comput. 79(270), 871–915 (2010). arXiv:0804.2543 [math.NA]ADSMathSciNetzbMATHGoogle Scholar
  18. [Bor11]
    Borodin, A.: Determinantal point processes. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011). arXiv:0911.1153 [math.PR]
  19. [Bor17]
    Borodin, A.: On a family of symmetric rational functions. Adv. Math. 306, 973–1018 (2017). arXiv:1410.0976 [math.CO]MathSciNetzbMATHGoogle Scholar
  20. [BC14]
    Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225–400 (2014). arXiv:1111.4408 [math.PR]MathSciNetzbMATHGoogle Scholar
  21. [BCF14]
    Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in \(1+ 1\) dimension. Commun. Pure Appl. Math. 67(7), 1129–1214 (2014). arXiv:1204.1024 [math.PR]MathSciNetzbMATHGoogle Scholar
  22. [BD11]
    Borodin, A., Duits, M.: Limits of determinantal processes near a tacnode. Annales de l’institut Henri Poincaré (B) 47(1), 243–258 (2011). arXiv:0911.1980 [math.PR]ADSMathSciNetzbMATHGoogle Scholar
  23. [BF14]
    Borodin, A., Ferrari, P.: Anisotropic growth of random surfaces in \(2+1\) dimensions. Commun. Math. Phys. 325, 603–684 (2014). arXiv:0804.3035 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  24. [BFPS07]
    Borodin, A., Ferrari, P., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129(5–6), 1055–1080 (2007). arXiv:math-ph/0608056 ADSMathSciNetzbMATHGoogle Scholar
  25. [BFS09]
    Borodin, A., Ferrari, P., Sasamoto, T.: Two speed TASEP. J. Stat. Phys 137(5), 936–977 (2009). arXiv:0904.4655 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  26. [BK08]
    Borodin, A., Kuan, J.: Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Adv. Math. 219(3), 894–931 (2008). arXiv:0712.1848 [math.RT]MathSciNetzbMATHGoogle Scholar
  27. [BOO00]
    Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups. J. AMS 13(3), 481–515 (2000). arXiv:math/9905032 [math.CO]MathSciNetzbMATHGoogle Scholar
  28. [BO07]
    Borodin, A., Olshanski, G.: Asymptotics of Plancherel-type random partitions. J. Algebra 313(1), 40–60 (2007). arXiv:math/0610240 MathSciNetzbMATHGoogle Scholar
  29. [BO16]
    Borodin, A., Olshanski, G.: Representations of the Infinite Symmetric Group, vol. 160. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  30. [BO17]
    Borodin, A., Olshanski, G.: The ASEP and determinantal point processes. Commun. Math. Phys. 353(2), 853–903 (2017). arXiv:1608.01564 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  31. [BP08]
    Borodin, A., Peche, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132(2), 275–290 (2008). arXiv:0712.1086v3 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  32. [BP16a]
    Borodin, A., Petrov, L.: Lectures on integrable probability: stochastic vertex models and symmetric functions. Lecture Notes of the Les Houches Summer School 104 (2016). arXiv:1605.01349 [math.PR]
  33. [BP16b]
    Borodin, A., Petrov, L.: Nearest neighbor Markov dynamics on Macdonald processes. Adv. Math. 300, 71–155 (2016). arXiv:1305.5501 [math.PR]MathSciNetzbMATHGoogle Scholar
  34. [BP18a]
    Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions. Selecta Math. 24(2), 751–874 (2018). arXiv:1601.05770 [math.PR]MathSciNetzbMATHGoogle Scholar
  35. [BP18b]
    Borodin, A., Petrov, L.: Inhomogeneous exponential jump model. Probab. Theory Relat. Fields 172, 323–385 (2018). arXiv:1703.03857 [math.PR]MathSciNetzbMATHGoogle Scholar
  36. [BM18]
    Bufetov, A., Matveev, K.: Hall–Littlewood RSK field. Selecta Math. 24(5), 4839–4884 (2018). arXiv:1705.07169 [math.PR]MathSciNetzbMATHGoogle Scholar
  37. [BP17]
    Bufetov, A., Petrov, L.: Yang-Baxter field for spin Hall–Littlewood symmetric functions (2017). arXiv preprint arXiv:1712.04584 [math.PR]
  38. [Cal15]
    Calder, J.: Directed last passage percolation with discontinuous weights. J. Stat. Phys. 158(4), 903–949 (2015)ADSMathSciNetzbMATHGoogle Scholar
  39. [CG18]
    Ciech, F., Georgiou, N.: Last passage percolation in an exponential environment with discontinuous rates (2018). arXiv preprint arXiv:1808.00917 [math.PR]
  40. [CEP96]
    Cohn, Henry, Elkies, Noam, Propp, James: Local statistics for random domino tilings of the Aztec diamond. Duke Math. J. 85(1), 117–166 (1996). arXiv:math/0008243 [math.CO]MathSciNetCrossRefzbMATHGoogle Scholar
  41. [Cor12]
    Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1, 1130001 (2012). arXiv:1106.1596 [math.PR]MathSciNetzbMATHGoogle Scholar
  42. [Cor16]
    Corwin, I.: Kardar–Parisi–Zhang Universality. Not. AMS 63(3), 230–239 (2016)MathSciNetzbMATHGoogle Scholar
  43. [CP16]
    Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343(2), 651–700 (2016). arXiv:1502.07374 [math.PR]ADSMathSciNetzbMATHGoogle Scholar
  44. [CT18]
    Corwin, I., Tsai, L.-C.: SPDE Limit of Weakly Inhomogeneous ASEP (2018). arXiv preprint arXiv:1806.09682 [math.PR]
  45. [CLST13]
    Costin, O., Lebowitz, J., Speer, E., Troiani, A.: The blockage problem. Bull. Inst. Math. Acad. Sinica (New Series) 8(1), 47–72 (2013). arXiv:1207.6555 [math-ph]MathSciNetzbMATHGoogle Scholar
  46. [DPPP12]
    Derbyshev, A., Poghosyan, S., Povolotsky, A., Priezzhev, V.: The totally asymmetric exclusion process with generalized update. J. Stat. Mech. (P05014) (2012). arXiv:1203.0902 [cond-mat.stat-mech]
  47. [DPP15]
    Derbyshev, A., Povolotsky, A., Priezzhev, V.: Emergence of jams in the generalized totally asymmetric simple exclusion process. Phys. Rev. E 91(2), 022125 (2015). arXiv:1410.2874 [math-ph]ADSGoogle Scholar
  48. [DLSS91]
    Derrida, B., Lebowitz, J., Speer, E., Spohn, H.: Dynamics of an anchored Toom interface. J. Phys. A 24(20), 4805 (1991)ADSMathSciNetzbMATHGoogle Scholar
  49. [DW08]
    Dieker, A.B., Warren, J.: Determinantal transition kernels for some interacting particles on the line. Annales de l’Institut Henri Poincaré 44(6), 1162–1172 (2008). arXiv:0707.1843 [math.PR]MathSciNetzbMATHGoogle Scholar
  50. [DZS08]
    Dong, J., Zia, R., Schmittmann, B.: Understanding the edge effect in TASEP with mean-field theoretic approaches. J. Phys. A 42(1), 015002 (2008). arXiv:0809.1974 [cond-mat.stat-mech]ADSMathSciNetzbMATHGoogle Scholar
  51. [Dui13]
    Duits, M.: The Gaussian free field in an interlacing particle system with two jump rates. Commun. Pure Appl. Math. 66(4), 600–643 (2013). arXiv:1105.4656 [math-ph]MathSciNetzbMATHGoogle Scholar
  52. [Edr52]
    Edrei, A.: On the generating functions of totally positive sequences. II. J. Analyse Math. 2, 104–109 (1952). ISSN: 0021-7670Google Scholar
  53. [Emr16]
    Emrah, E.: Limit shapes for inhomogeneous corner growth models with exponential and geometric weights. Electron. Commun. Probab. 21(42), 16 (2016). arXiv:1502.06986 [math.PR]MathSciNetzbMATHGoogle Scholar
  54. [Erd53]
    Erdélyi, A. (ed.): Higher Transcendental Functions. McGraw-Hill, New York (1953)zbMATHGoogle Scholar
  55. [EM98]
    Eynard, B., Mehta, M.L.: Matrices coupled in a chain: I. Eigenvalue correlations. J. Phys. A 31, 4449–4456 (1998)ADSMathSciNetzbMATHGoogle Scholar
  56. [Fer08]
    Ferrari, P.: The universal \(\text{Airy}_1\) and \(\text{ Airy }_2\) processes in the totally asymmetric simple exclusion process. In: Baik, J., Kriecherbauer, T., Li, L.-C., McLaughlin, K.T.-R., Tomei, C. (eds.) Integrable Systems and Random Matrices: In Honor of Percy Deift, Contemporary Mathematics, pp. 321–332. AMS (2008). arXiv:math-ph/0701021
  57. [FS11]
    Ferrari, P., Spohn, H.: Random growth models. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011). arXiv:1003.0881 [math.PR]
  58. [FNH99]
    Forrester, P.J., Nagao, T., Honner, G.: Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges. Nucl. Phys. B 553(3), 601–643 (1999). arXiv:cond-mat/9811142 [cond-mat.mes-hall]ADSMathSciNetzbMATHGoogle Scholar
  59. [Ful97]
    Fulton, W.: Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, Cambridge (1997). ISBN: 0521567246Google Scholar
  60. [GKS10]
    Georgiou, N., Kumar, R., Seppäläinen, T.: TASEP with discontinuous jump rates. ALEA Lat. Am. J. Probab. Math. Stat. 7, 293–318 (2010). arXiv:1003.3218 [math.PR]MathSciNetzbMATHGoogle Scholar
  61. [GTW02]
    Gravner, J., Tracy, C., Widom, H.: Fluctuations in the composite regime of a disordered growth model. Commun. Math. Phys. 229, 433–458 (2002)ADSMathSciNetzbMATHGoogle Scholar
  62. [Gre74]
    Greene, C.: An extension of Schensted’s theorem. Adv. Math. 14(2), 254–265 (1974)MathSciNetzbMATHGoogle Scholar
  63. [Gui97]
    Guiol, H.: Un résultat pour le processus d’exclusion à longue portée [A result for the long-range exclusion process]. In: Annales de l’Institut Henri Poincare (B) Probability and Statistics, vol. 33(4), pp. 387–405 (1997)Google Scholar
  64. [HHT15]
    Halpin-Healy, T., Takeuchi, K.: A KPZ cocktail-shaken, not stirred. J. Stat. Phys 160(4), 794–814 (2015). arXiv:1505.01910 [cond-mat.stat-mech]ADSMathSciNetzbMATHGoogle Scholar
  65. [Hel01]
    Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001). arXiv:cond-mat/0012229 [cond-mat.stat-mech]ADSMathSciNetGoogle Scholar
  66. [HKPV06]
    Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006). arXiv:math/0503110 [math.PR]MathSciNetzbMATHGoogle Scholar
  67. [IS05]
    Imamura, T., Sasamoto, T.: Polynuclear growth model with external source and random matrix model with deterministic source. Phys. Rev. E. 71(4), 041606 (2005)ADSGoogle Scholar
  68. [IS07]
    Imamura, T., Sasamoto, T.: Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition. J. Stat. Phys. 128(4), 799–846 (2007). arXiv:math-ph/0702009 ADSMathSciNetzbMATHGoogle Scholar
  69. [ITW01]
    Its, A., Tracy, C., Widom, H.: Random words, Toeplitz determinants and integrable systems. In: Bleher, P., Its, A. (eds.) Random Matrices and Their Applications, vol. 40. MSRI Publications, Providence (2001)zbMATHGoogle Scholar
  70. [JL92]
    Janowsky, S., Lebowitz, J.: Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process. Phys. Rev. A 45(2), 618 (1992)ADSGoogle Scholar
  71. [JPS98]
    Jockusch, W., Propp, J., Shor, P.: Random domino tilings and the arctic circle theorem (1998). arXiv preprint arXiv:math/9801068 [math.CO]
  72. [Joh00]
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000). arXiv:math/9903134 [math.CO]ADSMathSciNetzbMATHGoogle Scholar
  73. [Joh03]
    Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242(1), 277–329 (2003). arXiv:math/0206208 [math.PR]ADSMathSciNetzbMATHGoogle Scholar
  74. [Joh16]
    Johansson, K.: Two time distribution in Brownian directed percolation. Commun. Math. Phys. 351, 1–52 (2016). arXiv:1502.00941 [math-ph]MathSciNetGoogle Scholar
  75. [Joh18]
    Johansson, K.: The two-time distribution in geometric last-passage percolation (2018). arXiv preprint arXiv:1802.00729 [math.PR]
  76. [Kru91]
    Krug, J.: Boundary-induced phase transitions in driven diffusive systems. Phys. Rev. Lett. 67(14), 1882–1885 (1991)ADSMathSciNetGoogle Scholar
  77. [Kru00]
    Krug, J.: Phase separation in disordered exclusion models. Braz. J. Phys. 30(1), 97–104 (2000). arXiv:cond-mat/9912411 [cond-mat.stat-mech]ADSGoogle Scholar
  78. [KF96]
    Krug, J., Ferrari, P.A.: Phase transitions in driven diffusive systems with random rates. J. Phys. A Math. Gen. 29(18), L465 (1996)ADSzbMATHGoogle Scholar
  79. [Lan96]
    Landim, C.: Hydrodynamical limit for space inhomogeneous one-dimensional totally asymmetric zero-range processes. Ann. Probab. 24(2), 599–638 (1996)MathSciNetzbMATHGoogle Scholar
  80. [Lig73]
    Liggett, T.: An infinite particle system with zero range interactions. Ann. Probab. 1(2), 240–253 (1973)MathSciNetzbMATHGoogle Scholar
  81. [Lig76]
    Liggett, T.: Coupling the simple exclusion process. Ann. Probab. 4, 339–356 (1976)MathSciNetzbMATHGoogle Scholar
  82. [Lig99]
    Liggett, T.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Volume 324. Grundlehren de mathematischen Wissenschaften. Springer, Berlin (1999)Google Scholar
  83. [Lig05]
    Liggett, T.: Interacting Particle Systems. Springer, Berlin (2005)zbMATHGoogle Scholar
  84. [MGP68]
    MacDonald, C., Gibbs, J., Pipkin, A.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)Google Scholar
  85. [Mac95]
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  86. [Mac94]
    Macêdo, A.M.S.: Universal parametric correlations at the soft edge of the spectrum of random matrix ensembles. Europhys. Lett. 26(9), 641 (1994). arXiv:cond-mat/9404038 ADSGoogle Scholar
  87. [Mar09]
    Martin, J.: Batch queues, reversibility and first-passage percolation. Queueing Syst. 62(4), 411–427 (2009). arXiv:0902.2026 [math.PR]MathSciNetzbMATHGoogle Scholar
  88. [MQR17]
    Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point (2017). arXiv preprint arXiv:1701.00018 [math.PR]
  89. [O’C03a]
    O’Connell, N.: A path-transformation for random walks and the Robinson–Schensted correspondence. Trans. AMS 355(9), 3669–3697 (2003)MathSciNetzbMATHGoogle Scholar
  90. [O’C03b]
    O’Connell, N.: Conditioned random walks and the RSK correspondence. J. Phys. A 36(12), 3049–3066 (2003)ADSMathSciNetzbMATHGoogle Scholar
  91. [OP13]
    O’Connell, N., Pei, Y.: A q-weighted version of the Robinson–Schensted algorithm. Electron. J. Probab. 18(95), 1–25 (2013). arXiv:1212.6716 [math.CO]MathSciNetzbMATHGoogle Scholar
  92. [Oko01]
    Okounkov, A.: Infinite wedge and random partitions. Selecta Math. 7(1), 57–81 (2001). arXiv:math/9907127 [math.RT]MathSciNetzbMATHGoogle Scholar
  93. [OR03]
    Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. AMS 16(3), 581–603 (2003). arXiv:math/0107056 [math.CO]MathSciNetzbMATHGoogle Scholar
  94. [OP17]
    Orr, D., Petrov, L.: Stochastic higher spin six vertex model and \(q\)-TASEPs. Adv. Math. 317, 473–525 (2017)MathSciNetzbMATHGoogle Scholar
  95. [Pet19]
    Petrov, L.: PushTASEP in inhomogeneous space (2019). In preparationGoogle Scholar
  96. [Pov13]
    Povolotsky, A.: On integrability of zero-range chipping models with factorized steady state. J. Phys. A 46, 465205 (2013). arXiv:1308.3250 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  97. [PS02]
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002). arXiv:math.PR/0105240 MathSciNetzbMATHGoogle Scholar
  98. [QS15]
    Quastel, J., Spohn, H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160(4), 965–984 (2015). arXiv:1503.06185 [math-ph]ADSMathSciNetzbMATHGoogle Scholar
  99. [Rez91]
    Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \(Z^d\). Commun. Math. Phys. 140(3), 417–448 (1991)ADSMathSciNetzbMATHGoogle Scholar
  100. [RT08]
    Rolla, L., Teixeira, A.: Last passage percolation in macroscopically inhomogeneous media. Electron. Commun. Probab. 13, 131–139 (2008)MathSciNetzbMATHGoogle Scholar
  101. [Ros81]
    Rost, H.: Nonequilibrium behaviour of a many particle process: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58(1), 41–53 (1981). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  102. [Sag01]
    Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Springer, Berlin (2001). ISBN: 0387950672Google Scholar
  103. [Sep98]
    Seppäläinen, T.: Hydrodynamic scaling, convex duality and asymptotic shapes of growth models. Markov Process. Relat. Fields 4(1), 1–26 (1998)MathSciNetzbMATHGoogle Scholar
  104. [Sep99]
    Seppäläinen, T.: Existence of hydrodynamics for the totally asymmetric simple k-exclusion process. Ann. Probab. 27(1), 361–415 (1999)MathSciNetzbMATHGoogle Scholar
  105. [Sep01]
    Seppäläinen, T.: Hydrodynamic profiles for the totally asymmetric exclusion process with a slow bond. J. Stat. Phys. 102(1–2), 69–96 (2001). arXiv:math/0003049 [math.PR]MathSciNetzbMATHGoogle Scholar
  106. [SK99]
    Seppäläinen, T., Krug, J.: Hydrodynamics and platoon formation for a totally asymmetric exclusion model with particlewise disorder. J. Stat. Phys. 95(3–4), 525–567 (1999)ADSMathSciNetzbMATHGoogle Scholar
  107. [Sim05]
    Simon, B.: Trace Ideals and Their Applications, Second Edition, Mathematical Surveys and Monographs, vol. 120. AMS, Providence (2005)Google Scholar
  108. [Sos00]
    Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55(5), 923–975 (2000). arXiv:math/0002099 [math.PR]MathSciNetzbMATHGoogle Scholar
  109. [Spi70]
    Spitzer, F.: Interaction of Markov processes. Adv. Math. 5(2), 246–290 (1970)MathSciNetzbMATHGoogle Scholar
  110. [Spo91]
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)zbMATHGoogle Scholar
  111. [Sta01]
    Stanley, R.: Enumerative Combinatorics. Volume 2. With a Foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin. Cambridge University Press, Cambridge (2001)Google Scholar
  112. [Tho64]
    Thoma, E.: Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. Math. Zeitschr 85, 40–61 (1964)zbMATHGoogle Scholar
  113. [TTCB10]
    Thompson, A.G., Tailleur, J., Cates, M.E., Blythe, R.A.: Zero-range processes with saturated condensation: the steady state and dynamics. J. Stat. Mech. 02, P02013 (2010). arXiv:0912.3009 [cond-mat.stat-mech]Google Scholar
  114. [TW94]
    Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994). arXiv:hep-th/9211141. ISSN: 0010-3616ADSMathSciNetzbMATHGoogle Scholar
  115. [TW09]
    Tracy, C., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009). arXiv:0807.1713 [math.PR]ADSMathSciNetzbMATHGoogle Scholar
  116. [WW09]
    Warren, J., Windridge, P.: Some examples of dynamics for Gelfand–Tsetlin patterns. Electron. J. Probab. 14, 1745–1769 (2009). arXiv:0812.0022 [math.PR]MathSciNetzbMATHGoogle Scholar
  117. [Woe05]
    Woelki, M.: Steady states of discrete mass transport models. PhD. thesis, Master thesis, University of Duisburg-Essen (2005)Google Scholar
  118. [ZDS11]
    Zia, R.K.P., Dong, J.J., Schmittmann, B.: Modeling translation in protein synthesis with TASEP: a tutorial and recent developments. J. Stat. Phys. 144, 405 (2011)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations