Communications in Mathematical Physics

, Volume 372, Issue 3, pp 1059–1115 | Cite as

A Nonlocal Isoperimetric Problem with Dipolar Repulsion

  • Cyrill B. MuratovEmail author
  • Thilo M. Simon


We study a geometric variational problem for sets in the plane in which the perimeter and a regularized dipolar interaction compete under a mass constraint. In contrast to previously studied nonlocal isoperimetric problems, here the nonlocal term asymptotically localizes and contributes to the perimeter term to leading order. We establish existence of generalized minimizers for all values of the dipolar strength, mass and regularization cutoff and give conditions for existence of classical minimizers. For subcritical dipolar strengths we prove that the limiting functional is a renormalized perimeter and that for small cutoff lengths all mass-constrained minimizers are disks. For critical dipolar strength, we identify the next-order \(\Gamma \)-limit when sending the cutoff length to zero and prove that with a slight modification of the dipolar kernel there exist masses for which classical minimizers are not disks.



This work was supported by NSF via grant DMS-1614948. The authors wish to acknowledge valuable discussions with A. Bernoff, V. Julin, and M. Novaga.


  1. 1.
    Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions. National Bureau of Standards, Gaithersburg (1964)zbMATHGoogle Scholar
  2. 2.
    Alberti, G., Choksi, R., Otto, F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Am. Math. Soc. 22, 569–605 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aleksandrov, A.D.: Uniqueness theorems for surfaces in the large. V. Vestn. Leningr. Univ. 13, 5–8 (1958)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, New York (2000)zbMATHGoogle Scholar
  5. 5.
    Andelman, D., Broçhard, F., Joanny, J.F.: Phase transitions in Langmuir monolayers of polar molecules. J. Chem. Phys. 86, 3673–3681 (1987)ADSGoogle Scholar
  6. 6.
    Andelman, D., Rosensweig, R.E.: Modulated phases: review and recent results. J. Phys. Chem. B 113, 3785–3798 (2009)Google Scholar
  7. 7.
    Bétermin, L., Knüpfer, H.: On Born’s conjecture about optimal distribution of charges for an infinite ionic crystal. J. Nonlinear Sci. 28, 1629–1656 (2018)ADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Bonacini, M., Cristoferi, R.: Local and global minimality results for a nonlocal isoperimetric problem on \({\mathbb{R}}^N\). SIAM J. Math. Anal. 46, 2310–2349 (2014)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bonnesen, T.: Über das isoperimetrische Defizit ebener Figuren. Math. Ann. 91, 252–268 (1924)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Born, M.: Über elektrostatische Gitterpotentiale. Z. Phys. 7, 124–140 (1921)ADSGoogle Scholar
  11. 11.
    Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Choksi, R., Muratov, C.B., Topaloglu, I.: An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Not. Am. Math. Soc. 64, 1275–1283 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Choksi, R., Peletier, M.A.: Small volume fraction limit of the diblock copolymer problem: I. Sharp interface functional. SIAM J. Math. Anal. 42, 1334–1370 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Choksi, R., Peletier, M.A.: Small volume fraction limit of the diblock copolymer problem: II. Diffuse interface functional. SIAM J. Math. Anal. 43, 739–763 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cicalese, M., Spadaro, E.: Droplet minimizers of an isoperimetric problem with long-range interactions. Commun. Pure Appl. Math. 66, 1298–1333 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ciraolo, G., Maggi, F.: On the shape of compact hypersurfaces with almost-constant mean curvature. Commun. Pure Appl. Math. 70, 665–716 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ciraolo, G., Vezzoni, L.: A sharp quantitative version of Alexandrov’s theorem via the method of moving planes. J. Eur. Math. Soc. 20, 261–299 (2018)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Daneri, S., Runa, E.: Exact periodic stripes for a minimizers of a local/non-local interaction functional in general dimension. Arch. Ration. Mech. Anal. (2018) (published online)Google Scholar
  19. 19.
    Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441–507 (2015)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Figalli, A., Maggi, F.: On the shape of liquid drops and crystals in the small mass regime. Arch. Ration. Mech. Anal. 201, 143–207 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Frank, R.L., Killip, R., Nam, P.T.: Nonexistence of large nuclei in the liquid drop model. Lett. Math. Phys. 106, 1033–1036 (2016)ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Frank, R.L., Lieb, E.H.: A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47, 4436–4450 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Fuglede, B.: Bonnesen’s inequality for the isoperimetric deficiency of closed curves in the plane. Geom. Dedicata 38, 283–300 (1991)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gamow, G.: Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. A 126, 632–644 (1930)ADSzbMATHGoogle Scholar
  25. 25.
    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Volume 80 of Monographs in Mathematics. Birkhäuser, Basel (1984)Google Scholar
  26. 26.
    Goldman, D., Muratov, C.B., Serfaty, S.: The \(\Gamma \)-limit of the two-dimensional Ohta–Kawasaki energy. I. Droplet density. Arch. Ration. Mech. Anal. 210, 581–613 (2013)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Goldman, D., Muratov, C.B., Serfaty, S.: The \(\Gamma \)-limit of the two-dimensional Ohta–Kawasaki energy. Droplet arrangement via the renormalized energy. Arch. Ration. Mech. Anal. 212, 445–501 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Goldman, M., Runa, E.: On the optimality of stripes in a variational model with non-local interactions. Preprint arXiv:1611.07228 (2016)
  29. 29.
    Heisenberg, W.: Structure and Properties of the Nuclei (1932–1935). In: Blum, W., Dürr, H.-P., Rechenberg, H. (eds.) Werner Heisenberg: Collected Works, Series A/Part II, pp. 197–238. Springer, Berlin (1989)Google Scholar
  30. 30.
    Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin (1998)Google Scholar
  31. 31.
    Jackson, D.P., Goldstein, R.E., Cebers, A.O.: Hydrodynamics of fingering instabilities in dipolar fluids. Phys. Rev. E 50, 298–307 (1994)ADSGoogle Scholar
  32. 32.
    Julin, V.: Isoperimetric problem with a Coulombic repulsive term. Indiana Univ. Math. J. 63, 77–89 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Kent-Dobias, J.: Energy-driven pattern formation in planar dipole–dipole systems. HMC Senior Thesis, Harvey Mudd College (2014)Google Scholar
  34. 34.
    Kent-Dobias, J., Bernoff, A.J.: Energy-driven pattern formation in planar dipole–dipole systems in the presence of weak noise. Phys. Rev. E 91, 032919 (2015)ADSGoogle Scholar
  35. 35.
    Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing non-local term. I. The planar case. Commun. Pure Appl. Math. 66, 1129–1162 (2013)zbMATHGoogle Scholar
  36. 36.
    Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing non-local term. II. The general case. Commun. Pure Appl. Math. 67, 1974–1994 (2014)zbMATHGoogle Scholar
  37. 37.
    Knüpfer, H., Muratov, C.B., Nolte, F.: Magnetic domains in thin ferromagnetic films with strong perpendicular anisotropy. Arch. Ration. Mech. Anal. 232, 727–761 (2018)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Knüpfer, H., Muratov, C.B., Novaga, M.: Low density phases in a uniformly charged liquid. Commun. Math. Phys. 345, 141–183 (2016)ADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Langer, S.A., Goldstein, R.E., Jackson, D.P.: Dynamics of labyrinthine pattern formation in magnetic fluids. Phys. Rev. A 46, 4894–4904 (1992)ADSGoogle Scholar
  40. 40.
    Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Lu, J., Otto, F.: Nonexistence of a minimizer for Thomas–Fermi–Dirac–von Weizsäcker model. Commun. Pure Appl. Math. 67, 1605–1617 (2014)zbMATHGoogle Scholar
  42. 42.
    Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012)Google Scholar
  43. 43.
    Magnanini, R., Poggesi, G.: Serrin’s Problem and Alexandrov’s Soap Bubble Theorem: Enhanced Stability Via Integral Identities. arXiv:1708.07392 (2017)
  44. 44.
    McConnell, H.M., Moy, V.T.: Shapes of finite two-dimensional lipid domains. J. Phys. Chem. 92, 4520–4525 (1988)Google Scholar
  45. 45.
    Morini, M., Sternberg, P.: Cascade of minimizers for a nonlocal isoperimetric problem in thin domains. SIAM J. Math. Anal. 46, 2033–2051 (2014)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Moser, A., Takano, K., Margulies, D.T., Albrecht, M., Sonobe, Y., Ikeda, Y., Sun, S., Fullerton, E.E.: Magnetic recording: advancing into the future. J. Phys. D Appl. Phys. 35, R157–R167 (2002)ADSGoogle Scholar
  47. 47.
    Muratov, C.B.: Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys. Rev. E 66(066108), 1–25 (2002)MathSciNetGoogle Scholar
  48. 48.
    Muratov, C.B.: Droplet phases in non-local Ginzburg–Landau models with Coulomb repulsion in two dimensions. Commun. Math. Phys. 299, 45–87 (2010)ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    Muthukumar, M., Ober, C.K., Thomas, E.L.: Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277, 1225–1232 (1997)Google Scholar
  50. 50.
    Osserman, R.: Bonnesen-style isoperimetric inequalities. Am. Math. Mon. 86, 1–29 (1979)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Otto, F.: Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Ration. Mech. Anal. 141, 63–103 (1998)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Pethick, C.J., Ravenhall, D.G.: Matter at large neutron excess and the physics of neutron-star crusts. Ann. Rev. Nucl. Part. Sci. 45, 429–484 (1995)ADSGoogle Scholar
  53. 53.
    Rigot, S.: Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme. Mémoires de la SMF 2e série 82, 1–104 (2000)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Rosensweig, R.E.: Ferrohydrodynamics. Courier Dover Publications, Mineola (1997)Google Scholar
  55. 55.
    Seul, M., Andelman, D.: Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476–483 (1995)ADSGoogle Scholar
  56. 56.
    Sternberg, P., Topaloglu, I.: On the global minimizers of the nonlocal isoperimetric problem in two dimensions. Interfaces Free Bound. 13, 155–169 (2010)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Strukov, B.A., Levanyuk, A.P.: Ferroelectric Phenomena in Crystals: Physical Foundations. Springer, New York (1998)zbMATHGoogle Scholar
  58. 58.
    Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (2000)zbMATHGoogle Scholar
  59. 59.
    Tsebers, A.O., Maiorov, M.M.: Magnetostatic instabilities in plane layers of magnetizable liquids. Magnetohydrodynamics 16, 21–27 (1980)zbMATHGoogle Scholar
  60. 60.
    Uhlenbeck, G.E.: Summarizing remarks. In: Bak, T.A. (ed.) Statistical Mechanics: Foundations and Applications: Proceedings of the I.U.P.A.P. Meeting, Copenhagen, 1966, New York, NY. W. A. Benjamin, Inc. (1967)Google Scholar
  61. 61.
    von Weizsäcker, C.F.: Zur Theorie der Kernmassen. Z. für Phys. A 96, 431–458 (1935)ADSzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations