On Ramond Decorations

  • Ivan C. H. Ip
  • Robert C. Penner
  • Anton M. ZeitlinEmail author


We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup \(SL(2,\mathbb {R})\) of OSp(1|2).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



A.M.Z. is partially supported by Simons Collaboration Grant, Award ID: 578501.


  1. 1.
    Crane, L., Rabin, J.: Super Riemann surfaces: uniformization and Teichmüller theory. Commun. Math. Phys. 113, 601–623 (1988)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Dolgikh, S.N., Rosly, A.A., Schwarz, A.S.: Supermoduli spaces. Commun. Math. Phys. 135, 91–100 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Donagi, R., Witten, E.: Supermoduli space is not projected. Proc. Symp. Pure Math. 90, 19–72 (2015). arXiv:1304.7798 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Natanzon, S.M.: Moduli of Riemann surfaces, Hurwitz-type spaces, and their superanalogues. Russ. Math. Surv. 54(1), 61–117 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Natanzon, S.M.: Moduli of Riemann Surfaces, Real Algebraic Curves, and Their Superanalogs (Trans. of Mathematical Monographs). American Mathematical Society (2004)Google Scholar
  6. 6.
    Ip, I.C.-H., Penner, R.C., Zeitlin, A.M.: \({\cal{N}}=2\) super-Teichmüller theory. Adv. Math. 336, 409–454 (2018). arXiv:1605.08094 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Penner, R.C.: The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys. 113, 299–339 (1987)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Penner, R.C.: Decorated Teichmüller Theory. European Mathematical Society, Zürich (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Penner, R.C., Zeitlin, A.M.: Decorated super-Teichmüller space. J. Differ. Geom. 111(3), 527–566 (2019)CrossRefzbMATHGoogle Scholar
  10. 10.
    Rogers, A.: Supermanifolds: Theory and Applications. World Scientific, Singapore (2017)zbMATHGoogle Scholar
  11. 11.
    Witten, E.: Notes on super Riemann surfaces and their moduli. arXiv:1209.2459

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ivan C. H. Ip
    • 1
  • Robert C. Penner
    • 2
    • 3
  • Anton M. Zeitlin
    • 4
    • 5
    Email author
  1. 1.Department of MathematicsHong Kong University of Science and TechnologyClear Water BayHong Kong
  2. 2.Institute des Hautes Études ScientifiquesBures-sur-YvetteFrance
  3. 3.University of California–Los AngelesLos AngelesUSA
  4. 4.Department of MathematicsLouisiana State UniversityBaton RougeUSA
  5. 5.IPME RASSt. PetersburgRussia

Personalised recommendations