Advertisement

Some Breathers and Multi-breathers for FPU-Type Chains

  • Gianni ArioliEmail author
  • Hans Koch
Article
  • 17 Downloads

Abstract

We consider several breather solutions for FPU-type chains that have been found numerically. Using computer-assisted techniques, we prove that there exist true solutions nearby, and in some cases, we determine whether or not the solution is spectrally stable. Symmetry properties are considered as well. In addition, we construct solutions that are close to (possibly infinite) sums of breather solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

220_2019_3417_MOESM1_ESM.zip (6.7 mb)
Supplementary material 1 (zip 6822 KB)

References

  1. 1.
    Arioli, G., Gazzola, F.: Existence and numerical approximation of periodic motions of an infinite lattice of particles. ZAMP 46, 898–912 (1995)Google Scholar
  2. 2.
    Arioli G., Gazzola F.: Periodic motions of an infinite lattice of particles with nearest neighbour interaction. Nonlin. Anal. TMA 26, 1103–1114 (1996)CrossRefzbMATHGoogle Scholar
  3. 3.
    Arioli G., Gazzola F., Terracini S.: Multibump periodic motions of an infinite lattice of particles. Math. Zeit. 223, 627–642 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arioli G., Koch H., Terracini S.: Two novel methods and multi-mode periodic solutions for the Fermi–Pasta–Ulam model. Commun. Math. Phys. 255, 1–19 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arioli G., Koch H.: Spectral stability for the wave equation with periodic forcing. J. Differ. Equ. 265, 2470–2501 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ada Reference Manual, ISO/IEC 8652:2012(E). Available e.g. at http://www.ada-auth.org/arm.html
  7. 7.
    A free-software compiler for the Ada programming language, which is part of the GNU Compiler Collection; see http://gnu.org/software/gnat/. Accessed 12 Sept 2016
  8. 8.
    Berman G.P., Izraileva F.M.: The Fermi–Pasta–Ulam problem: fifty years of progress. Chaos 15, 015104 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Braun O.M., Kivshar Y.S.: The Frenkel–Kontorova model. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fontich E., Llave R., Sire Y.: Construction of invariant whiskered tori by a parameterization method. Part II: quasi-periodic and almost periodic breathers in coupled map lattices. J. Differ. Equ. 259, 2180–2279 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fontich E., Llave R., Martin P.: Dynamical systems on lattices with decaying interaction II: hyperbolic sets and their invariant manifolds. J. Differ. Equ. 250, 2887–2926 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gorbach A.V., Flach S.: Discrete breathers—advances in theory and applications. Phys. Rep. 467, 1–116 (2008)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Gallavotti G. (ed.): The Fermi–Pasta–Ulam problem. A status report, Lecture Notes in Physics 728. Springer, Berlin (2008)Google Scholar
  14. 14.
    Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1976)zbMATHGoogle Scholar
  15. 15.
    Kevrekidis P., Cuevas-Maraver J., Pelinovsky D.: Energy Criterion for the spectral stability of discrete breathers. Phys. Rev. Lett. 117, 094101 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Koukouloyannis V., Kevrekidis P.: On the stability of multibreathers in Klein–Gordon chains. Nonlinearity 22, 2269–2285 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    MacKay R.: Discrete breathers: classical and quantum. Phys. A 288, 174–198 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pankov A.: Traveling Waves And Periodic Oscillations in Fermi–Pasta–Ulam Lattices. Imperial College Press, UK (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Pelinovsky D., Sakovich A.: Multi-site breathers in Klein–Gordon lattices: stability, resonances, and bifurcations. Nonlinearity 25, 3423–3451 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rabinowitz P.H.: Multibump solutions of differential equations: an overview. Chin. J. Math. 24, 1–36 (1996)MathSciNetzbMATHGoogle Scholar
  21. 21.
    The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard for Binary Floating–Point Arithmetic, ANSI/IEEE Std 754–2008Google Scholar
  22. 22.
    The MPFR library for multiple-precision floating-point computations with correct rounding. GNU MPFR version 4.0.2 (2019). http://www.mpfr.org/

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsPolitecnico di MilanoMilanItaly
  2. 2.Department of MathematicsThe University of Texas at AustinAustinUSA

Personalised recommendations