Advertisement

Communications in Mathematical Physics

, Volume 372, Issue 2, pp 713–732 | Cite as

On Traveling Solitary Waves and Absence of Small Data Scattering for Nonlinear Half-Wave Equations

  • Jacopo BellazziniEmail author
  • Vladimir Georgiev
  • Enno Lenzmann
  • Nicola Visciglia
Article

Abstract

We consider nonlinear half-wave equations with focusing power-type nonlinearity
$$i \partial_t u = \sqrt{-\Delta} \, u - |u|^{p-1} u, \quad \mbox{with}\, (t,x) \in \mathbb{R} \times \mathbb{R}^d$$
with exponents \({1 < p < \infty}\) for d = 1 and \({1 < p < (d+1)/(d-1)}\) for d ≥  2. We study traveling solitary waves of the form
$$u(t, x) = e^{i\omega t} Q_v(x-vt)$$
with frequency \({\omega \in \mathbb{R}}\), velocity \({v \in \mathbb{R}^d}\), and some finite-energy profile \({Q_v \in H^{1/2}(\mathbb{R}^d)}\), \({Q_v \not \equiv 0}\). We prove that traveling solitary waves for speeds \({|v| \geq 1}\) do not exist. Furthermore, we generalize the non-existence result to the square root Klein–Gordon operator \({\sqrt{-\Delta+m^2}}\) and other nonlinearities. As a second main result, we show that small data scattering fails to hold for the focusing half-wave equation in any space dimension. The proof is based on the existence and properties of traveling solitary waves for speeds \({|v| < 1}\). Finally, we discuss the energy-critical case when \({p=(d+1)/(d-1)}\) in dimensions d ≥  2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

J.B., V.G., and N.V. are partially supported by Project 2016 “Dinamica di equazioni nonlineari dispersive” of FONDAZIONE DI SARDEGNA. J.B. and V.G. are also partially supported by Project 2017 “Problemi stazionari e di evoluzione nelle equazioni di campo nonlineari” of INDAM, GNAMPA- Gruppo Nazionale per l’AnalisiMatematica, la Probabilita e le loro Applicazioni. V.G. is partially supported by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, by Top Global University Project, Waseda University and the Project PRA 2018 49 of University of Pisa. E.L. was partially supported by the SwissNational Science Foundation (SNSF) throughGrantNo. 200021–149233. In addition, E. L. thanks Rupert Frank for valuable discussions and providing us with reference [3].

References

  1. 1.
    Amick C.J., Toland J.F.: Uniqueness and related analytic properties for the Benjamin–Ono equation—a nonlinear Neumann problem in the plane. Acta Math. 167(1–2), 107–126 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bellazzini J., Georgiev V., Visciglia N.: Long time dynamics for semirelativistic NLS and half wave in arbitrary dimension. Math. Ann. 371(1–2), 707–740 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brezis H.: How to recognize constant functions. A connection with Sobolev spaces. Usp. Mat. Nauk 57, 59–74 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dodson B.: Global wellposedness and scattering for the mass critical nonlinear Schrodinger equation with mass below the mass of the ground state. Adv. Math. 285, 1589–1618 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Elgart A., Schlein B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60(4), 500–545 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Frank R.L., Lenzmann E.: Uniqueness of non-linear ground states for fractional Laplacians in \({{\mathbb{R}}}\). Acta Math. 210(2), 261–318 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Frank R.L., Lenzmann E., Silvestre L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math 69(9), 1671–1726 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fröhlich J., Jonsson B.L.G., Lenzmann E.: Boson stars as solitary waves. Commun. Math. Phys. 274(1), 1–30 (2007)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Fujiwara, K., Machihara, S., Ozawa, T.: Remark on a semirelativistic equation in the energy space. Discrete Contin. Dyn. Syst. Suppl. 473–478 (2015)Google Scholar
  10. 10.
    Gerard, P., Lenzmann, E., Pocovnicu, O., Raphael, P.: A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line. Ann. PDE Art. 7, no. 1 (2018)Google Scholar
  11. 11.
    Himmelsbach, D.: Blowup, solitary waves and scattering for the fractional nonlinear Schrödinger equation. Ph.D. thesis (2017). https://doi.org/10.5451/unibas-006770569
  12. 12.
    Kirkpatrick K., Lenzmann E., Stafflani E.: On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 317(3), 563–591 (2013)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear Schrodinger equation in the radial case. Invent. Math. 166, 645–675 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Krieger J., Lenzmann E., Raphaël P.: Non dispersive solution of the L 2 critical Half wave equation. Arch. Ration. Mech. Anal. 209(1), 61–129 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lam N., Lu G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255(3), 298–325 (2013)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ozawa, T., Visciglia, N.: An improvement on the Brezis–Gallouët technique for 2D NLS and 1D half-wave equation. Ann. Inst. Henri Poincare Anal. Non lineaire 33, 1069–1079 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Weidmann J.: The virial theorem and its application to the spectral theory of Schrödinger operators. Bull. Am. Math. Soc. 73, 452–456 (1967)CrossRefGoogle Scholar
  19. 19.
    Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1982/83)Google Scholar
  20. 20.
    Weinstein M. I.: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Commun. Partial Differ. Equ. 12(10), 1133–1173 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Università di SassariSassariItaly
  2. 2.Dipartimento di MatematicaUniversità di PisaPisaItaly
  3. 3.Faculty of Science and EngineeringWaseda UniversityTokyoJapan
  4. 4.IMI–BASSofiaBulgaria
  5. 5.Departement Mathematik und InformatikUniversität BaselBaselSwitzerland

Personalised recommendations