Constructive Tensor Field Theory: The \({T_{4}^{4}}\) Model
Article
First Online:
- 71 Downloads
- 1 Citations
Abstract
We continue our constructive study of tensor field theory through the next natural model, namely the rank four tensor theory with quartic melonic interactions and propagator inverse of the Laplacian on U(1)4. This superrenormalizable tensor field theory has a power counting quite similar to ordinary \({\phi^4_3}\). We control the model via a multiscale loop vertex expansion which has to be pushed quite beyond the one of the \({T^{4}_{3}}\) model and we establish its Borel summability in the coupling constant. This paper is also a step to prepare the constructive treatment of just renormalizable models, such as the \({T^{4}_{5}}\) model with quartic melonic interactions.
Preview
Unable to display preview. Download preview PDF.
References
- ADJ91.Ambjorn J., Durhuus B., Jonsson T.: Three dimensional simplicial gravity and generalized matrix models. Mod. Phys. Lett. A. 6(12), 1133 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Amb02.Ambjorn, J.: Simplicial Euclidean and Lorentzian quantum gravity. In: Bishop, N.T., Muharaj, S.D. (eds.) General Relativity and Gravitation. Proceedings of the 16th International Conference. Durban, South Africa, 15–21 July 2001. World Scientific (2002). arXiv:gr-qc/0201028
- Amb+13.Ambjorn, J., et al.: Causal dynamical triangulations and the search for a theory of quantum gravity. In: The Thirteenth Marcel Grossmann Meeting. Stockholm University, Sweden, 1–7 July 2012. World Scientific, pp. 120–137 (2013). arXiv:1305.6680 [gr-qc]
- AR95.Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. In: Constructive Physics, vol. 446. Lectures Notes in Physics. Springer, New York (1995)Google Scholar
- AR98.Abdesselam A., Rivasseau V.: Explicit fermionic tree expansions. Lett. Math. Phys. 44(1), 77–88 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- BDR15.Bonzom V., Delepouve T., Rivasseau V.: Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps. Nucl. Phys. B 895, 161–191 (2015) arXiv:1502.01365 [math-ph]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- BG12a.Ben Geloun, J.: Asymptotic freedom of Rank 4 tensor group field theory. In: Symmetries and Groups in Contemporary Physics, vol. 11. Nankai Series in Pure, Applied Mathematics and Theoretical Physics. Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics. Tianjin, China, 20–26 August 2012. World Scientific, pp. 367–372 (2012). arXiv:1210.5490 [hep-th]
- BG12b.Ben Geloun J.: Two and four-loop \({\beta}\)-functions of rank 4 renormalizable tensor field theories. Class. Quant. Gravity 29, 235011 (2012) arXiv:1205.5513 [hep-th]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- BG14.Ben Geloun J.: Renormalizable models in Rank \({d \geq 2}\) tensorial group field theory. Commun. 332(1), 117–188 (2014). https://doi.org/10.1007/s00220-014-2142-6 arXiv:1306.1201 [hep-th]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- BGMR10.Ben Geloun J., Magnen J., Rivasseau V.: Bosonic colored group field theory. Eur. Phys. J. C 70(4), 1119–1130 (2010) arXiv:0911.1719 [hep-th]ADSCrossRefGoogle Scholar
- BGOS12.Ben Geloun J., Ousmane Samary D.: 3D tensor field theory: renormalization and one-loop \({\beta}\)-functions. Ann. H. Poincaré 14(6), 1599–1642 (2012) arXiv:1201.0176 [hep-th]MathSciNetzbMATHCrossRefGoogle Scholar
- BGR12a.Ben Geloun J., Rivasseau V.: A enormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318(1), 69–109 (2012). https://doi.org/10.1007/s00220-012-1549-1 arXiv:1111.4997 [hep-th]zbMATHCrossRefGoogle Scholar
- BGR12b.Bonzom V., Gurau R., Rivasseau V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D 85(8), 084037 (2012) arXiv:1202.3637 [hep-th]ADSCrossRefGoogle Scholar
- BGR13.Ben Geloun J., Rivasseau V.: Addendum to ”A renormalizable 4-dimensional tensor field theory”. Commun. Math. Phys. 322(3), 957–965 (2013) arXiv:1209.4606 [hep-th]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- BK87.Brydges D. C., Kennedy T.: Mayer expansions and the Hamilton-Jacobi equation. J. Stat. Phys. 48(1), 19–49 (1987)ADSMathSciNetCrossRefGoogle Scholar
- BLT17.Bonzom, V., Lionni, L., Tanasa, A.: Diagrammatics of a colored SYK model and of an SYKlike tensor model, leading and next-to-leading orders. J. Math. Phys. 58(5), 052301 (2017). https://doi.org/10.1063/1.4983562. arXiv:1702.06944 [hep-th]
- Bon13.Bonzom V.: New 1/N expansions in random tensor models. J. High Energy Phys. 2013(06), 062 (2013). https://doi.org/10.1007/JHEP06(2013)062 arXiv:1211.1657 [hep-th]MathSciNetzbMATHCrossRefGoogle Scholar
- Bon16.Bonzom, V.: Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension \({d \geqslant 2}\). SIGMA 12 (July 20, 2016). Special Issue on Tensor Models, Formalism and Applications, p. 073. https://doi.org/10.3842/SIGMA.2016.073. arXiv:1603.03570 [math-ph]
- Bou92.Boulatov D.V.: A model of three-dimensional lattice gravity. Mod. Phys. Lett. A. 7(18), 1629–1646 (1992) arXiv:hep-th/9202074 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Chm08.Chmutov S.: Generalized duality for graphs on surfaces and the signed Bollobás–Riordan polynomial. J. Comb. Theory Ser. B 99(3), 617–638 (2008) arXiv:0711.3490 [math.CO]MathSciNetzbMATHCrossRefGoogle Scholar
- COR14a.Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of an SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. (2014). arXiv:1303.6772 [hep-th]
- COR14b.Carrozza S., Oriti D., Rivasseau V.: Renormalization of tensorial group field theories: Abelian U(1) models in four dimensions. Commun. Math. Phys. 327(2), 603–641 (2014) arXiv:1207.6734 [hep-th]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Dav85.David F.: A model of random surfaces with non-trivial critical behaviour. Nucl. Phys. B 257, 543–576 (1985)ADSCrossRefGoogle Scholar
- DFGZJ95.Di Francesco P., Ginsparg P., Zinn-Justin J.: 2D gravity and random matrices. Phys. Rep. 254, 1–133 (1995)ADSCrossRefGoogle Scholar
- DFR94.Doplicher S., Fredenhagen K., Roberts J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331(1–2), 39–44 (1994)ADSMathSciNetCrossRefGoogle Scholar
- DGR14.Delepouve T., Gurau R., Rivasseau V.: Universality and Borel summability of arbitrary qua-rtic tensor models. Ann. Inst. H. Poincaré Probab. Stat. 52(2), 821–848 (2014). https://doi.org/10.1214/14-AIHP655 arXiv:1403.0170 [hep-th]ADSzbMATHCrossRefGoogle Scholar
- Dis+06.Disertori M. et al.: Vanishing of Beta function of non commutative \({\Phi^4_4}\) theory to all orders. Phys. Lett. B 649(1), 95–102 (2006) arXiv:hep-th/0612251 ADSMathSciNetCrossRefGoogle Scholar
- DR06.Disertori M., Rivasseau V.: Two- and three-loop beta function of non-commutative \({\Phi^4_4}\) theory. Eur. Phys. J. C 50, 661–671 (2006) arXiv:hep-th/0610224 ADSzbMATHCrossRefGoogle Scholar
- DR16.Delepouve T., Rivasseau V.: Constructive tensor field theory: the T 4 3 model. Commun. Math. Phys. 345(2), 477–506 (2016). https://doi.org/10.1007/s00220-016-2680-1 arXiv:1412.5091 [math-ph]ADSzbMATHCrossRefGoogle Scholar
- EMS74.Eckmann J.-P., Magnen J., Sénéor R.: Decay properties and borel summability for the Schwinger functions in \({P(\phi)_2}\) theories. Commun. Math. Phys. 39(4), 251–271 (1974)ADSCrossRefGoogle Scholar
- Fel+85.Feldman J. et al.: Bounds on completely convergent Euclidean Feynman graphs. Commun. Math. Phys. 98, 273–288 (1985)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Fel+86.Feldman J. et al.: A renormalizable field theory: the massive Gross-Neveu model in two dimensions. Commun. Math. Phys. 103(1), 67–103 (1986)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Fer17.Ferrari, F.: The large D limit of planar diagrams (2017). arXiv:1701.01171 [hep-th]
- FO76.Feldman J., Osterwalder K.: The Wightman axioms and the mass gap for weakly coupled \({\phi^4_3}\) quantum field theories. Ann. Phys. 97, 80–135 (1976)ADSCrossRefGoogle Scholar
- Fre05.Freidel L.: Group field theory: an overview. Int. J. Theor. Phys. 44, 1769 (2005) arXiv:hep-th/0505016 MathSciNetzbMATHCrossRefGoogle Scholar
- GJ73.Glimm J., Jaffe A.: Positivity of the \({\phi^4_3}\) Hamiltonian. Fortschr. Phys. 21, 327 (1973)CrossRefGoogle Scholar
- GJ87.Glimm, J., Jaffe, A.: Quantum physics. A functional integral point of view, 2nd edn, pp. xxii+535. Springer, New York. ISBN: 0-387-96476-2 (1987)Google Scholar
- GJS73.Glimm J., Jaffe A., Spencer T.: The Wightman axioms and particle structure in the \({P(\phi)_2}\) quantum field model. Ann. Math. 100(3), 585–632 (1973). https://doi.org/10.2307/1970959 CrossRefGoogle Scholar
- GK15.Gurau R., Krajewski T.: Analyticity results for the cumulants in a random matrix model. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 2(2), 169–228 (2015). https://doi.org/10.4171/AIHPD/17 arXiv:1409.1705 [math-ph]MathSciNetzbMATHCrossRefGoogle Scholar
- GK86.Gawedzki K., Kupiainen A.: Gross-Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102(1), 1–30 (1986)ADSMathSciNetCrossRefGoogle Scholar
- GR11a.Gurau R., Rivasseau V.: The 1/N expansion of colored tensor models in arbitrary dimension. Eur. Phys. Lett. 95(5), 50004 (2011) arXiv:1101.4182 [gr-qc]ADSCrossRefGoogle Scholar
- GR11b.Gurau R., Ryan J.P.: Colored tensor models—a review. SIGMA 8(020), 78 (2011) arXiv:1109.4812 [hep-th]zbMATHGoogle Scholar
- GR14.Gurau R., Rivasseau V.: The multiscale loop vertex expansion. Ann. H. Poincaré 16(8), 1869–1897 (2014). https://doi.org/10.1007/s00023-014-0370-0 arXiv:1312.7226 [math-ph]MathSciNetzbMATHCrossRefGoogle Scholar
- Gro92.Gross M.: Tensor models and simplicial quantum gravity in > 2−D. Nucl. Phys. B Proc. Suppl. 25(1), 144–149 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Gur10a.Gurau R.: Colored group field theory. Commun. Math. Phys. 304, 69–93 (2010). https://doi.org/10.1007/s00220-011-1226-9 arXiv:0907.2582 [hep-th]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Gur10b.Gurau R.: The 1/N expansion of colored tensor models. Ann. H. Poincaré 12(5), 829–847 (2010) arXiv:1011.2726 [gr-qc]MathSciNetzbMATHCrossRefGoogle Scholar
- Gur11.Gurau R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. H. Poincaré 13, 399–423 (2011) arXiv:1102.5759 [gr-qc]MathSciNetzbMATHCrossRefGoogle Scholar
- Gur13a.Gurau R.: The 1/N expansion of tensor models beyond perturbation theory. Commun. Math. Phys. 330(3), 973–1019 (2013) arXiv:1304.2666 [math-ph]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Gur13b.Gurau R.: Universality for random tensors. Ann. Inst. H. Poincaré Probab. Stat. 50(4), 1474–1525 (2013). https://doi.org/10.1214/13-AIHP567 arXiv:1111.0519 [math.PR]MathSciNetzbMATHCrossRefGoogle Scholar
- Gur17a.Gurau, R.: Quenched equals annealed at leading order in the colored SYK model (2017). arXiv:1702.04228 [hep-th]
- Gur17b.Gurau R.: The complete 1/N expansion of a SYK-like tensor model. Nucl. Phys. B 916, 386–401 (2017). https://doi.org/10.1016/j.nuclphysb.2017.01.015 arXiv:1611.04032 [hep-th]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- GW04a.Grosse H., Wulkenhaar R.: Renormalisation of \({\phi^4}\)-theory on noncommutative \({\mathbb{R}^4}\) in the matrix base. Commun. Math. Phys. 256(2), 305–374 (2004) arXiv:hep-th/0401128 ADSzbMATHMathSciNetCrossRefGoogle Scholar
- GW04b.Grosse H., Wulkenhaar R.: The beta-function in duality-covariant noncommutative \({\phi^4}\)-theory. Eur. Phys. J. C 35, 277–282 (2004) arXiv:hep-th/0402093 ADSzbMATHCrossRefGoogle Scholar
- GW09.Grosse, H., Wulkenhaar, R.: Progress in solving a noncommutative quantum field theory in four dimensions (2009). arXiv:0909.1389 [hep-th]
- GW13.Grosse H., Wulkenhaar R.: Self-dual noncommutative \({\phi^4}\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys. 329(3), 1069–1130 (2013). https://doi.org/10.1007/s00220-014-1906-3 arXiv:1205.0465 [math-ph]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- GW14.Grosse, H., Wulkenhaar, R.: Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity (2014). arXiv:1406.7755 [hep-th]
- GW16.Grosse H., Wulkenhaar R.: On the fixed point equation of a solvable 4D QFT model. Vietnam J. Math. 44(1), 153–180 (2016) arXiv:1505.05161 [math-ph]MathSciNetzbMATHCrossRefGoogle Scholar
- Haa96.Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Texts and Monographs in Physics. Springer, Berlin (1996)zbMATHCrossRefGoogle Scholar
- Hoo74.’t Hooft G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72(3), 461–473 (1974)ADSMathSciNetCrossRefGoogle Scholar
- Kaz85.Kazakov V.A.: Bilocal regularization of models of random surfaces. Phys. Lett. B 150(4), 282–284 (1985)ADSCrossRefGoogle Scholar
- Kra12.Krajewski, T.: Group field theories. PoS QGQGS 2011.005 (2012). arXiv:1210.6257 [gr-qc]
- KSBS17.Krishnan, C., Sanyal, S., Bala Subramanian, P.N.: Quantum chaos and holographic tensor models. J. High Energy Phys. 3, 56 (2017). arXiv:1612.06330 [hep-th]
- KT17.Klebanov, I. R., Tarnopolsky, G.: Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models. Phys. Rev. D. 95, 046004 (2017). arXiv:1611.08915 [hep-th]
- Lah15a.Lahoche, V.: Constructive tensorial group field theory I: the \({U(1)-T^4_3}\) model (2015). arXiv:1510.05050 [hep-th]
- Lah15b.Lahoche V.: Constructive tensorial group field theory II: the \({U(1)-T^4_4}\) model (2015). arXiv:1510.05051 [hep-th]
- LAJ05.Loll R., Ambjorn J., Jurkiewicz J.: The universe from Scratch. Contemp. Phys. 47, 103–117 (2005) arXiv:hep-th/0509010 zbMATHGoogle Scholar
- Mag+09.Magnen, J., et al.: Scaling behavior of three-dimensional group field theory. Class. Quant. Gravity 26(18), 185012 (2009). https://doi.org/10.1088/0264-9381/26/18/185012. arXiv:0906.5477 [hep-th]
- Mie14.Miermont, G.: Aspects of random maps. Saint-Flour lecture notes (2014)Google Scholar
- MR07.Magnen J., Rivasseau V.: Constructive \({\phi^4}\) field theory without tears. Ann. H. Poincaré 9, 403–424 (2007) arXiv:0706.2457 [math-ph]MathSciNetzbMATHCrossRefGoogle Scholar
- MS76.Magnen J., Sénéor R.: The infinite volume limit of the \({\phi^4_3}\) model. Ann. Inst. Henri Poincaré 24(2), 95–159 (1976)MathSciNetGoogle Scholar
- MS77.Magnen J., Sénéor R.: Phase space cell expansion and Borel summability for the Euclidean \({\phi^4_3}\) theory. Commun. Math. Phys. 56(3), 237–276 (1977). https://doi.org/10.1007/BF01614211 ADSCrossRefGoogle Scholar
- Nel65.Nelson, E.: A quartic interaction in two dimensions. In: Goodman, R., Segal I. (eds.) Mathematical Theory of Elementary Particles. MIT Press, Endicott House, Dedham (1965)Google Scholar
- OS13.Ousmane Samary, D.: Beta functions of \({U(1)^d}\) gauge invariant just renormalizable tensor models. Phys. Rev. D. 88, 105003 (2013). arXiv:1303.7256 [hep-th]
- OSVT13.Ousmane Samary D., Vignes-Tourneret F.: Just renormalizable TGFT’s on \({U(1)^d}\) with gauge invariance. Commun. Math. Phys. 329(2), 545–578 (2013) arXiv:1211.2618 [hep-th]MathSciNetzbMATHCrossRefGoogle Scholar
- Reg61.Regge T.: General relativity without coordinates. Il Nuovo Cimento 19(3), 558–571 (1961)ADSMathSciNetCrossRefGoogle Scholar
- Riv07.Rivasseau, V.: Constructive matrix theory. J. High Energy Phys. 9, 008 (2007). arXiv:0706.1224 [hep-th]
- Riv13.Rivasseau V.: The tensor track, III. Fortschr. Phys. 62(2), 81–107 (2012). https://doi.org/10.1002/prop.201300032 arXiv:1311.1461 [hep-th]MathSciNetzbMATHCrossRefGoogle Scholar
- Riv15.Rivasseau, V.: Why are tensor field theories asymptotically free? Eur. Phys. Lett. 111(6), 60011 (2015). https://doi.org/10.1209/0295-5075/111/60011. arXiv:1507.04190 [hep-th]
- Riv16.Rivasseau, V.: Constructive Tensor Field Theory. SIGMA 12 (Aug. 18, 2016). Special Issue on Tensor Models, Formalism and Applications, p. 085. https://doi.org/10.3842/SIGMA.2016.085. arXiv:1603.07312 [math-ph]
- Riv17.Rivasseau V.: Loop vertex expansion for higher order interactions. Lett. Math. Phys. 108(5), 1147–1162 (2017). https://doi.org/10.1007/s11005-017-1037-9 arXiv:1702.07602 [math-ph]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Riv91.Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton Series in Physics. Princeton Univ. Pr., Princeton (1991)Google Scholar
- RS80.Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Revised and Enlarged Edition, vol. 1: Functionnal Analysis. Academic Press (1980)Google Scholar
- RW13.Rivasseau V., Wang Z.: How to resum Feynman graphs. Ann. H. Poincaré 15(11), 2069–2083 (2013) arXiv:1304.5913 [math-ph]MathSciNetzbMATHCrossRefGoogle Scholar
- Sas91.Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6(28), 2613 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- Sim74.Simon B.: The \({P(\phi)_2}\) Euclidean (Quantum) Field Theory. Princeton University Press, Princeton (1974)Google Scholar
- Sok80.Sokal A. D.: An improvement of Watson’s theorem on Borel summability. J. Math. Phys. 21(2), 261–263 (1980)ADSMathSciNetCrossRefGoogle Scholar
- SW64.Streater R.F., Wightman A.S.: PCT, Spin and Statistics, and All That. W. A. Benjamin, New York (1964)zbMATHGoogle Scholar
- VW73.Velo, G., Wightman, A.S. (eds.): Constructive Quantum Field Theory, vol. 25. Lecture notes in physics. The 1973 “Ettore Majorana” International School of Mathematical Physics. Springer (1973)Google Scholar
- Wit16.Witten, E.: An SYK-like model without disorder (2016). arXiv:1610.09758 [hep-th]
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019