Advertisement

Communications in Mathematical Physics

, Volume 369, Issue 2, pp 433–456 | Cite as

Solvable Cubic Resonant Systems

  • Anxo BiasiEmail author
  • Piotr Bizoń
  • Oleg Evnin
Article
  • 33 Downloads

Abstract

Weakly nonlinear analysis of resonant PDEs in recent literature has generated a number of resonant systems for slow evolution of the normal mode amplitudes that possess remarkable properties. Despite being infinite-dimensional Hamiltonian systems with cubic nonlinearities in the equations of motion, these resonant systems admit special analytic solutions, which furthermore display periodic perfect energy returns to the initial configurations. Here, we construct a very large class of resonant systems that shares these properties that have so far been seen in specific examples emerging from a few standard equations of mathematical physics (the Gross–Pitaevskii equation, nonlinear wave equations in Anti-de Sitter spacetime). Our analysis provides an additional conserved quantity for all of these systems, which has been previously known for the resonant system of the two-dimensional Gross–Pitaevskii equation, but not for any other cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Ben Craps, Javier Mas, and Alexandre Serantes for discussions. This research has been supported by FPA2014-52218-P from Ministerio de Economia y Competitividad, by Xunta de Galicia ED431C 2017/07, by European Regional Development Fund (FEDER), by Grant María de Maetzu Unit of Excellence MDM-2016-0692, by Polish National Science Centre Grant Number 2017/26/A/ST2/00530 and by CUniverse research promotion project by Chulalongkorn University (Grant CUAASC). A.B. thanks the Spanish program “ayudas para contratos predoctorales para la formación de doctores 2015” and its mobility program for his stay at Jagiellonian University, where part of this project was developed.

References

  1. 1.
    Balasubramanian V., Buchel A., Green S.R., Lehner L., Liebling S.L.: Holographic thermalization, stability of anti-de Sitter space, and the Fermi–Pasta–Ulam paradox. Phys. Rev. Lett. 113, 071601 (2014) arXiv:1403.6471 [hep-th] ADSCrossRefGoogle Scholar
  2. 2.
    Craps B., Evnin O., Vanhoof J.: Renormalization group, secular term resummation and AdS (in)stability. JHEP 1410, 48 (2014) arXiv:1407.6273 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Craps B., Evnin O., Vanhoof J.: Renormalization, averaging, conservation laws and AdS (in)stability. JHEP 1501, 108 (2015) arXiv:1412.3249 [gr-qc]ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Germain P., Hani Z., Thomann L.: On the continuous resonant equation for NLS: I. Deterministic analysis. J. Math. Pures Appl. 105, 131 (2016) arXiv:1501.03760 [math.AP]MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bizoń P., Maliborski M., Rostworowski A.: Resonant dynamics and the instability of anti-de Sitter spacetime. Phys. Rev. Lett. 115, 081103 (2015) arXiv:1506.03519 [gr-qc]ADSCrossRefGoogle Scholar
  6. 6.
    Germain P., Thomann L.: On the high frequency limit of the LLL equation. Q. Appl. Math. 74, 633 (2016) arXiv:1509.09080 [math.AP]MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bizoń P., Craps B., Evnin O., Hunik D., Luyten V., Maliborski M.: Conformal flow on S 3 and weak field integrability in AdS4. Commun. Math. Phys. 353, 1179 (2017) arXiv:1608.07227 [math.AP]ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Biasi A.F., Mas J., Paredes A.: Delayed collapses of BECs in relation to AdS gravity. Phys. Rev. E 95, 032216 (2017) arXiv:1610.04866 [nlin.PS]ADSCrossRefGoogle Scholar
  9. 9.
    Biasi A., Bizoń P., Craps B., Evnin O.: Exact lowest-Landau-level solutions for vortex precession in Bose–Einstein condensates. Phys. Rev. A 96, 053615 (2017) arXiv:1705.00867 [cond-mat.quant-gas]ADSCrossRefGoogle Scholar
  10. 10.
    Bizoń, P., Hunik-Kostyra, D., Pelinovsky, D.: Ground state of the conformal flow on \({\mathbb{S}^3}\). arXiv:1706.07726 [math.AP]
  11. 11.
    Craps B., Evnin O., Luyten V.: Maximally rotating waves in AdS and on spheres. JHEP 1709, 059 (2017) arXiv:1707.08501 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gérard, P., Germain, P., Thomann, L.: On the cubic lowest Landau level equation. arXiv:1709.04276 [math.AP]
  13. 13.
    Biasi, A., Bizoń, P., Craps, B., Evnin, O.: Two infinite families of resonant solutions for the Gross–Pitaevskii equation. arXiv:1805.01775 [cond-mat.quant-gas]
  14. 14.
    Biasi, A., Craps, B., Evnin, O.: Energy returns in global AdS4. arXiv:1810.04753 [hep-th]
  15. 15.
    Bizoń, P., Hunik-Kostyra, D., Pelinovsky, D.: Stationary states of the cubic conformal flow on \({\mathbb{S}^3}\). arXiv:1807.00426 [math-ph]
  16. 16.
    Bizoń P., Rostworowski A.: On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. 107, 031102 (2011) arXiv:1104.3702 [gr-qc]ADSCrossRefGoogle Scholar
  17. 17.
    Craps B., Evnin O.: AdS (in)stability: an analytic approach. Fortschr. Phys. 64, 336 (2016) arXiv:1510.07836 [gr-qc]MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Murdock, J.A.: Perturbations: Theory and Methods. SIAM, Philadelphia (1987)Google Scholar
  19. 19.
    Kuksin, S., Maiocchi, A.: The effective equation method. In: New Approaches to Nonlinear Waves. Springer (2016) arXiv:1501.04175 [math-ph]
  20. 20.
    Gérard P., Grellier S.: The cubic Szegő equation. Ann. Scient. Éc. Norm. Sup 43, 761 (2010) arXiv:0906.4540 [math.CV]CrossRefzbMATHGoogle Scholar
  21. 21.
    Gérard P., Grellier S.: Effective integrable dynamics for a certain nonlinear wave equation. Anal. PDE 5, 1139 (2012) arXiv:1110.5719 [math.AP]MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gérard P., Grellier S.: An explicit formula for the cubic Szegő equation. Trans. Am. Math. Soc. 367, 2979 (2015) arXiv:1304.2619 [math.AP]CrossRefzbMATHGoogle Scholar
  23. 23.
    Gérard, P., Grellier, S.: The cubic Szegő equation and Hankel operators. arXiv:1508.06814 [math.AP]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física de PartículasUniversidade de Santiago de Compostela and Instituto Galego de Física de Altas Enerxías (IGFAE)Santiago de CompostelaSpain
  2. 2.Institute of PhysicsJagiellonian UniversityKrakówPoland
  3. 3.Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  4. 4.Theoretische NatuurkundeVrije Universiteit Brussel and The International Solvay InstitutesBrusselsBelgium

Personalised recommendations