Advertisement

Attractor Properties for Irreversible and Reversible Interacting Particle Systems

  • Benedikt Jahnel
  • Christof KülskeEmail author
Article

Abstract

We consider translation-invariant interacting particle systems on the lattice with finite local state space admitting at least one Gibbs measure as a time-stationary measure. The dynamics can be irreversible but should satisfy some mild non-degeneracy conditions. We prove that weak limit points of any trajectory of translation-invariant measures, satisfying a non-nullness condition, are Gibbs states for the same specification as the time-stationary measure. This is done under the additional assumption that zero entropy loss of the limiting measure w.r.t. the time-stationary measure implies that they are Gibbs measures for the same specification. We show how to prove the non-nullness for a large number of cases, and also give an alternate version of the last condition such that the non-nullness requirement can be dropped. As an application we obtain the attractor property if there is a reversible Gibbs measure. Our method generalizes convergence results using relative entropy techniques to a large class of dynamics including irreversible and non-ergodic ones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the editor and anonymous referees for comments and suggestions that helped to improve the presentation of the material. This research was supported by the Leibniz program Probabilistic Methods for Mobile Ad-Hoc Networks.

References

  1. 1.
    Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. In: Fundamental Principles of Mathematical Sciences, vol. 348. Springer (2014)Google Scholar
  2. 2.
    Dai Pra, P.: Large deviations and stationary measures for interacting particle systems. Stochast. Process. Appl. 48(1) (1993)Google Scholar
  3. 3.
    Dereudre D.: Variational principle for Gibbs point processes with finite range interaction. Electron. Commun. Probab. 21(10), 11 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    van Enter A.C.D., Fernández R., Sokal A.D.: Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    van Enter A.C.D., Fernández R., den Hollander F., Redig F.: Possible Loss and recovery of Gibbsianness during the stochastic evolution of Gibbs Measures. Comm. Math. Phys. 226, 101–130 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    van Enter A.C.D., Fernández R., den Hollander F., Redig F.: A large-deviation view on dynamical Gibbs-non-Gibbs transitions. Moscow Math. J. 10, 687–711 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    van Enter A.C.D., Ruszel W.M.: Gibbsianness vs Non-Gibbsianness of time-evolved planar rotor models.. Stoch. Proc. Appl. 119, 1866–1888 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Erbar M., Kuwada K., Sturm K.T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201(58), 993–1071 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ermolaev V.N., Külske C.: Low-temperature dynamics of the Curie-Weiss model: Periodic orbits, multiple histories and loss of Gibbsianness. J. Stat. Phys. 141, 727–756 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Funaki T., Spohn H.: Motion by mean curvature from the Ginzburg-Landau interface model. Commun. Math. Phys. 185, 1–36 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Georgii, H.-O.: Canonical Gibbs measures, Springer Berlin, Lecture Notes in Mathematics 760 (1979)Google Scholar
  12. 12.
    Georgii H.-O. (2011) Gibbs measures and phase transitions, New York: De GruyterGoogle Scholar
  13. 13.
    Giacomin G., Pakdaman K., Pellegrin X.: Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25, 1247–1273 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guionnet, A., Zegarlinśki, B.: Lectures on logarithmic Sobolev inequalities, in Séminaire de Probabilités, XXXVI. Lecture Notes in Math., vol. 1801, Springer, Berlin (2003)Google Scholar
  15. 15.
    Häggström O.: Is the fuzzy Potts model Gibbsian?. Ann. Inst. H. Poincaré Probab. Statist. 39(5), 891–917 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Higuchi Y., Shiga T.: Some results on Markov processes of infinite lattice spin systems. J. Math. Kyoto Univ. 15(1), 211–229 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Holley R.: Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys. 23, 87–99 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Holley R., Stroock D.: In one and two dimensions, every stationary measure for a stochastic Ising model is a Gibbs state. Commun. Math. Phys. 55, 37–45 (1977)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Jahnel B., Külske C.: Attractor properties of non-reversible dynamics w.r.t. invariant Gibbs measures on the lattice. Markov Process. Related Fields 22(3), 507–535 (2016)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Jahnel B., Külske C.: A class of non-ergodic interacting particle systems with unique invariant measure. Ann. Appl. Probab. 24, 2595–2643 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jahnel, B., Külske, C.: Synchronization for discrete mean-field rotators, Electron. J. Probab. 19(14) (2014)Google Scholar
  22. 22.
    Jahnel B., Külske C.: A class of non-ergodic probabilistic cellular automata with unique invariant measure and quasi-periodic orbit. Stoch. Proc. Appl. 125, 2427–2450 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jahnel B., Külske C.: The Widom–Rowlinson model under spin flip: Immediate loss and sharp recovery of quasilocality. Ann. Appl. Probab. 27, 3845–3892 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jahnel, B., Külske, C.: Gibbsian representation for point processes via hyperedge potentials. arXiv:1707.05991
  25. 25.
    Kipnis, C., Landim, C.: Scaling limits of interacting particle systems, Graduate Studies in Mathematics, vol. 320, Springer-Verlag Berlin (1999)Google Scholar
  26. 26.
    Kozlov O.K.: Gibbs description of a system of random variables. Prob. Info. Trans. 10, 258–265 (1974)MathSciNetGoogle Scholar
  27. 27.
    Külske C., Le Ny A.: Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly broken symmetry. Commun. Math. Phys. 271, 431–454 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Külske C., Le Ny A., Redig F.: Relative entropy and variational properties of generalized Gibbsian measures. Ann. Probab. 32, 1691–1726 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Külske C., Redig F.: Loss without recovery of Gibbsianness during diffusion of continuous spins. Prob. Theor. Rel. Fields 135, 428–456 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Künsch H.: Non reversible stationary measures for infinite interacting particle systems. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 66(3), 407 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Liggett T. Interacting Particle Systems, New York: Springer-Verlag (1985)Google Scholar
  32. 32.
    Maes, C.: Elements of nonequilibrium statistical mechanics, Amsterdam: Elsevier, 607–655 (2006)Google Scholar
  33. 33.
    Maes C., Redig F., Verschuere M.: Entropy production for interacting particle systems. Amsterdam: Elsevier, Markov Process. Related Fields 7(1), 119–134 (2001)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Maes C., Shlosman S.B.: Rotating states in driven clock- and XY-models. J. Stat. Phys. 144, 1238–1246 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Olla S., Varadhan S.R.S.: Scaling limit for interacting Ornstein-Uhlenbeck processes. Commun. Math. Phys. 135, 355–378 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Olla S., Varadhan S.R.S., Yau H.T.: Hydrodynamic limit for a Hamiltonian system with weak noise. Commun. Math. Phys. 155, 523–560 (1991)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Pfister C.-E.: Thermodynamical aspects of classical lattice systems, in and out of equilibrium. Progr. Prob. 51, 393–472 (2002)zbMATHGoogle Scholar
  38. 38.
    von Renesse M.K., Sturm K.T.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58, 923–940 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Spohn H.: Interfacemotion in models with stochastic dynamics. J. Stat. Phys. 71, 1081–1132 (1993)ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    Sullivan W.G.: Potentials for almost Markovian random fields, Comm. Math. Phys. 33, 61–74 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Villani, C.: Optimal Transportation, Old and New. Graduate Studies in Mathematics, vol. 338, Springer-Verlag Berlin (2009)Google Scholar
  42. 42.
    Yau H.T.: Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22, 63–80 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Weierstrass Institute BerlinBerlinGermany
  2. 2.Fakultät für MathematikRuhr-Universität BochumBochumGermany

Personalised recommendations