Advertisement

Lieb–Schultz–Mattis Type Theorems for Quantum Spin Chains Without Continuous Symmetry

  • Yoshiko OgataEmail author
  • Hal Tasaki
Article
  • 12 Downloads

Abstract

We prove that a quantum spin chain with half-odd-integral spin cannot have a unique ground state with a gap, provided that the interaction is short ranged, translation invariant, and possesses time-reversal symmetry or \({\mathbb{Z}_{2} \times \mathbb{Z}_{2}}\) symmetry (i.e., the symmetry with respect to the \({\pi}\) rotations of spins about the three orthogonal axes). The proof is based on the deep analogy between the matrix product state formulation and the representation of the Cuntz algebra in the von Neumann algebra \({\pi(\mathcal{A}_{R})''}\) constructed from the ground state restricted to the right half-infinite chain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

It is a pleasure to thank HarukiWatanabe for valuable discussion which was essential for the present work, and Tohru Koma for useful discussion and comments. We also thank TakuMatsui and Bruno Nachtergaele for useful comments. The present work was supported by JSPS Grants-in-Aid for Scientific Research nos. 16K05171 (Y.O.) and 16H02211 (H.T.).

References

  1. AL.
    Affleck I., Lieb E.H.: A proof of part of Haldane’s conjecture on spin chains. Lett. Math. Phys. 12, 57–69 (1986)ADSMathSciNetCrossRefGoogle Scholar
  2. AN.
    Aizenman, M., Nachtergaele, B.: Geometric aspects of quantum spin states. Commun. Math. Phys. 164, 17–63 (1994) https://projecteuclid.org/euclid.cmp/1104270709
  3. A.
    Arveson, W.B.: Continuous Analogues of Fock space I, vol. 409. Memoirs of the American Mathematical Society, Providence (1989)Google Scholar
  4. BJKW.
    Bratteli O., Jorgensen P., Kishimoto A., Werner R.F.: Pure states on \({\mathcal{O}_d}\). J. Oper. Theory 43, 97–143 (2000)Google Scholar
  5. BJP.
    Bratteli, O., Jorgensen, P., Price, G.: Endomorphisms of \({B(\mathcal{H})}\). Quantization, nonlinear partial differential equations, and operator algebra, pp. 93–138. In: Proceedings of Symposia in Pure Mathematics, vol. 59 (1996) https://www.duo.uio.no/handle/10852/43152
  6. BJ.
    Bratteli O., Jorgensen P.E.T.: Endomorphisms of B(H) II. Finitely correlated states on O n. J. Funct. Anal. 145, 323–373 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. BR1.
    Bratteli O., Robinson D.W.: Operator Algebras and Quntum Statistical Mechanics 1. Springer, Berlin (1986)Google Scholar
  8. BR2.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin (1996)zbMATHGoogle Scholar
  9. CGW.
    Chen X., Gu Z.-C., Wen X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B. 83, 035107 (2011) arXiv:1008.3745 ADSCrossRefGoogle Scholar
  10. DL.
    Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. FNW.
    Fannes, M., Nachtergaele, B., Werner, R. F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992) https://projecteuclid.org/euclid.cmp/1104249404
  12. H1.
    Hastings, M.: An area law for one-dimensional quantum systems. J. Stat. Mech. P08024 (2007) arXiv:0705.2024
  13. H2.
    Hastings M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B. 69, 104431 (2004) arXiv:1001.5280 ADSCrossRefGoogle Scholar
  14. H3.
    Hastings M.B.: Sufficient conditions for topological order in insulators. Eur. Phys. Lett. 70, 824–830 (2005) arXiv:cond-mat/0411094 ADSCrossRefGoogle Scholar
  15. LSM.
    Lieb E., Schultz T., Mattis D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. M1.
    Matsui T.: A characterization of finitely correlated pure states. Infinite Dimens. Anal. Quantum Probab. 1, 647–661 (1998)CrossRefzbMATHGoogle Scholar
  17. M2.
    Matsui T.: The split property and the symmetry breaking of the quantum spin chain. Commun. Math. Phys. 218, 393–416 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. M3.
    Matsui, T.: Boundedness of entanglement entropy and split property of quantum spin chains. Rev. Math. Phys. 1350017 (2013). arXiv:1109.5778
  19. N.
    Nachtergaele, B.: Private communicationGoogle Scholar
  20. NS.
    Nachtergaele B., Sims R.: A multi-dimensional Lieb–Schultz–Mattis theorem. Commun. Math. Phys. 276, 437–472 (2007) arXiv:math-ph/0608046 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. O.
    Oshikawa M.: Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett. 84, 1535 (2000) arXiv:cond-mat/9911137 ADSCrossRefGoogle Scholar
  22. OYA.
    Oshikawa M., Yamanaka M., Affleck I.: Magnetization plateaus in spin chains: “Haldane gap” for half-integer spins. Phys. Rev. Lett. 78, 1984 (1997) arXiv:cond-mat/9610168 ADSCrossRefGoogle Scholar
  23. PTAV.
    Parameswaran S.A., Turner A.M., Arovas D.P., Vishwanath A.: Topological order and absence of band insulators at integer filling in non-symmorphic crystals. Nat. Phys. 9, 299–303 (2013) arXiv:1212.0557 CrossRefGoogle Scholar
  24. PWSVC.
    Perez-Garcia D., Wolf M.M., Sanz M., Verstraete F., Cirac J.I.: String order and symmetries in quantum spin lattices. Phys. Rev. Lett. 100, 167202 (2008) arXiv:0802.0447 ADSCrossRefGoogle Scholar
  25. PTBO.
    Pollmann F., Turner A.M., Berg E., Oshikawa M.: Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B. 81, 064439 (2010) arXiv:0910.1811 ADSCrossRefGoogle Scholar
  26. S.
    Sutherland B.: Beautiful Models—70 Years of Exactly Solved Quantum Many-Body Problems. World Scientific, Singapore (2004)CrossRefzbMATHGoogle Scholar
  27. Tak.
    Takesaki M.: Theory of Operator Algebras. I. Encyclopaedia of Mathematical Sciences. Springer, Berlin (2002)zbMATHGoogle Scholar
  28. Tas1.
    Tasaki H.: Lieb–Schultz–Mattis theorem with a local twist for general one-dimensional quantum systems. J. Stat. Phys. 170, 653–671 (2018) arXiv:1708.05186 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. Tas2.
    Tasaki, H.: Physics and Mathematics of Quantum Many-Body Systems (to be published from Springer)Google Scholar
  30. YOA.
    Yamanaka M., Oshikawa M., Affleck I.: Nonperturbative approach to Luttinger’s theorem in one dimension. Phys. Rev. Lett. 79, 1110 (1997) arXiv:cond-mat/9701141 ADSCrossRefGoogle Scholar
  31. Wa.
    Watanabe H.: The Lieb–Schultz–Mattis-type filling constraints in the 1651 magnetic space groups. Phys. Rev. B. 97, 165117 (2018) arXiv:1802.00587 ADSCrossRefGoogle Scholar
  32. WPVZ.
    Watanabe, H., Po, H.C., Vishwanath, A., Zaletel, M.P.: Filling constraints for spin–orbit coupled insulators in symmorphic and nonsymmorphic crystals. Proc. Natl. Acad. Sci. USA 112, 14551–14556 (2015) http://www.pnas.org/content/112/47/14551.short
  33. ZCZW.
    Zeng, B., Chen, X., Zhou, D.-L., Wen, X.-G.: Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phase in Many-Body Systems (to be published from Springer) arXiv:1508.02595

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoKomabaJapan
  2. 2.Department of PhysicsGakushuin UniversityMejiro, Toshima-kuJapan

Personalised recommendations