Homogeneous Contact Manifolds and Resolutions of Calabi–Yau Cones
- 4 Downloads
Abstract
In the present work we provide a constructive method to describe contact structures on compact homogeneous contact manifolds. The main feature of our approach is to describe the Cartan–Ehresmann connection (gauge field) for principal U(1)-bundles over complex flag manifolds by using elements of representation theory of simple Lie algebras. This description allows us to compute explicitly the expression of the contact form for any Boothby–Wang fibration over complex flag manifolds (Boothby and Wang in Ann Math 68:721–734, 1958) as well as their underlying Sasaki structures. By following Conlon and Hein (Duke Math J 162:2855–2902, 2013), Van Coevering (Math Ann, 2009. https://doi.org/10.1007/s00208-009-0446-1) and Goto (J Math Soc Jpn 64:1005–1052, 2012), as an application of our results we use the Cartan–Remmert reduction (Grauert in Math Ann 146:331–368, 1962) and the Calabi Ansatz technique (Calabi in Ann Sci École Norm Sup (4) 12:269–294, 1979) to provide many explicit examples of crepant resolutions of Calabi–Yau cones with certain homogeneous Sasaki–Einstein manifolds realized as links of isolated singularities. These concrete examples illustrate the existence part of the conjecture introduced in Martelli and Sparks (Phys Rev D 79(6):065009, 2009).
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
The authorwould like to thank the anonymous reviewers for their helpful and constructive comments that greatly contributed to improving the final version of the paper.
References
- 1.Abreu M.: Toric Kähler metrics: cohomogeneity one examples of constant scalar curvature in action-angle coordinates. J. Geom. Symmetry Phys. 17, 1–33 (2010)ADSMathSciNetzbMATHGoogle Scholar
- 2.Aloff S., Wallach N.R.: An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull. Am. Math. Soc. 81, 93 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Azad H., Biswas I.: Quasi-potentials and Kähler–Einstein metrics on flag manifolds. II. J. Algebra 269(2), 480–491 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Baum H., Friedrich T., Grunewald R., Kath I.: Twistors and Killing Spinors on Riemannian Manifolds, Volume 124 of Teubner-Texte zur Mathematik. B. G. Teubner, Leipzig (1991)zbMATHGoogle Scholar
- 5.Besse A.L.: Einstein Manifolds, 1987th edn. Springer, Berlin (2007)Google Scholar
- 6.Billey S., Lakshmibai V.: Singular Loci of Schubert Varieties, Progress in Mathematics, vol. 182. Birkhäuser, Boston (2000)CrossRefzbMATHGoogle Scholar
- 7.Blair D.E.: Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, vol. 203. Birkhäuser, Basel (2010)CrossRefGoogle Scholar
- 8.Boothby W.M., Wang H.C.: On contact manifolds. Ann. Math. 68, 721–734 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Bott R., Tu L.W.: Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, Book 82. Springer, Berlin (1995)Google Scholar
- 10.Boyer C.P., Galicki K.: Sasakian–Einstein geometry. Int. J. Math. 11, 873–909 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Boyer C., Galicki K.: Sasakian Geometry, Oxford Mathematical Monographs, 1st edn. Oxford University Press, Oxford (2008)Google Scholar
- 12.Boyer C.P., Galicki K.: New Einstein metrics in dimension five. J. Differ. Geom. 57(3), 443–463 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Boyer C.P., Galicki K., Nakamaye M.: Sasakian–Einstein structures on \({9\#(S^{2}\times S^{3} )}\). Trans. Am. Math. Soc. 354(8), 2983–2996 (2002)CrossRefzbMATHGoogle Scholar
- 14.Boyer C.P., Galicki K.: New Einstein metrics on \({8\#(S^{2}\times S^{3} )}\). Differ. Geom. Appl. 19(2), 245–251 (2003)CrossRefzbMATHGoogle Scholar
- 15.Boyer C.P., Galicki K., Kollár J.: Einstein metrics on spheres. Ann. Math. (2) 162(1), 557–580 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Brylinski J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. (Reprint of the 1993 edn.). Birkhäuser, Basel (2007)Google Scholar
- 17.Calabi E.: Metriques Kählériennes et fibrés holomorphes. Ann. Sci. École Norm. Sup. (4) 12, 269–294 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Cap A., Slovák J.: Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monographs. American Mathematical Society, Providence (2009)CrossRefzbMATHGoogle Scholar
- 19.Conlon R.J., Hein H.-J.: Asymptotically conical Calabi–Yau manifolds, I. Duke Math. J. 162, 2855–2902 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Correa, E.M., Grama, L.: Calabi–Yau metrics on canonical bundles of complex flag manifolds. arXiv:1709.07956 (2017)
- 21.Correa, E.M.: Integrable systems in coadjoint orbits and applications. Ph.D. Thesis, Universidade Estadual de Campinas (2017)Google Scholar
- 22.Eguchi T., Hanson A.J.: Asymptotically flat solutions to Euclidean gravity. Phys. Lett. 74, 249–251 (1978)CrossRefGoogle Scholar
- 23.Falcitelli M., Pastore A.M., Ianus S.: Riemannian Submersions and Related Topics. World Scientific Pub Co Inc., Hackensack (2004)CrossRefzbMATHGoogle Scholar
- 24.Fritzsche K., Grauert H.: From Holomorphic Functions to Complex Manifolds, Graduate Texts in Mathematics. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
- 25.Gauntlett J.P., Martelli D., Sparks J., Waldram D.: A new infinite class of Sasaki–Einstein manifolds. Adv. Theor. Math. Phys. 8, 987 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Gauntlett J.P., Martelli D., Sparks J., Waldram D.: Sasaki–Einstein metrics on \({S^{2}\times S^{3}}\). Adv. Theor. Math. Phys. 8, 711–734 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Gauntlett J.P., Martelli D., Sparks J., Yau S.-T.: Obstructions to the existence of Sasaki–Einstein metrics. Commun. Math. Phys. 273, 803–827 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 28.Geiges H.: A brief history of contact geometry and topology. Expo. Math. 19, 25–53 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Geiges, H.: Contact manifold-definition. In: Bulletin of the Manifold Atlas-Definition (2013)Google Scholar
- 30.Goto R.: Calabi–Yau structures and Einstein–Sasakian structures on crepant resolutions of isolated singularities. J. Math. Soc. Jpn. 64, 1005–1052 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Grauert H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Hatakeyama Y.: Some notes on differentiable manifolds with almost contact structures. Osaka Math. J. (2) 15, 176–181 (1963)MathSciNetzbMATHGoogle Scholar
- 33.Hijazi O., Montiel S., Urbano F.: Spin c geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds. Math. Z. 253(4), 821–853 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Hiller H.: Geometry of Coxeter Groups. Research Notes in Mathematics, vol. 54. Pitman Advanced Publishing Program, Baldwin City (1982)Google Scholar
- 35.Huybrechts D.: Complex Geometry: An Introduction. Universitext. Springer, Berlin (2005)zbMATHGoogle Scholar
- 36.Joyce D.D.: Compact Manifolds with Special Holonomy, Oxford Mathematical Mono Graphs. Oxford University Press, Oxford (2000)Google Scholar
- 37.Kobayashi S.: On compact Kähler manifolds with positive definite Ricci tensor. Ann. Math. 74, 381–385 (1961)CrossRefzbMATHGoogle Scholar
- 38.Kobayashi S.: Principal fiber bundles with the 1-dimensional toroidal group. Tôhoku Math. J. (2) 8, 29–45 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
- 39.Kobayashi S.: Topology of positively pinched Kahler manifolds. Tohoku Math. J. 15, 121–139 (1963)CrossRefzbMATHGoogle Scholar
- 40.Lakshmibai V., Raghavan K.N.: Standard Monomial Theory, Encyclopaedia of Mathematical Sciences, vol. 137, p. 213. Springer, Berlin (2008)Google Scholar
- 41.Laufer H.B.: On rational singularities. Am. J. Math. 94, 597–608 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
- 42.LeBrun C.: Counterexamples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591–596 (1988)ADSCrossRefzbMATHGoogle Scholar
- 43.Lie S.: Geometrie der Berhrungstransformationen (dargestellt von S. Lie und G. Scheffers). B. G. Teubner, Leipzig (1896)zbMATHGoogle Scholar
- 44.Lie, S.: Zur Theorie partieller Differentialgleichungen, p. 480 ff. Göttinger Nachrichten (1872)Google Scholar
- 45.Lutz, R.: Quelques remarques historiques et prospectives sur la gomtrie de contact. In: Conference on Differential Geometry and Topology (Sardinia, 1988) Rend. Sem. Fac. Sci. Univ. Cagliari, vol. 58(no.suppl.), pp. 361–393 (1988)Google Scholar
- 46.Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 47.Martelli D., Sparks J.: Symmetry-breaking vacua and baryon condensates in AdS/CFT correspondence. Phys. Rev. D 79(6), 065009 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 48.Matsushima Y.: Remarks on Kähler–Einstein manifolds. Nagoya Math. J. 46, 161–173 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
- 49.McDuff D., Salamon D.: Introduction to Symplectic Topology, Oxford Graduate Texts in Mathematics, 3rd edn. Oxford University Press, Oxford (2017)CrossRefGoogle Scholar
- 50.Montgomery D.: Simply-connected homogeneous spaces. Proc. Am. Math. Soc. 1, 467–469 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
- 51.Morimoto A.: On normal almost contact structures. J. Math. Soc. Jpn. 15, 420–436 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
- 52.O’Neill B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
- 53.Ornea L., Verbitsky M.: Embeddings of compact Sasakian manifolds. Math. Res. Lett. 14(4), 703–710 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 54.Palais, R.S.: A global formulation of the Lie theory of transformation groups. Mem. Am. Math. Soc. 22 (1957)Google Scholar
- 55.Pedersen H., Poon Y.: Hamiltonian Constructions of Kähler–Einstein metrics of constant scalar curvature. Commun. Math. Phys. 136, 309–326 (1991)ADSCrossRefzbMATHGoogle Scholar
- 56.Reeb, G.: Sur certaines proprits topologiques des trajectoires des systmes dynamiques. Acad. R. Belgique. Cl. Sci. Mm. Coll. in 8 27(9) (1952)Google Scholar
- 57.Salamon S.: Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Mathematics Series, vol. 201. Longman Scientific & Technical, Harlow (1989)Google Scholar
- 58.San Martin L.A.B.: Álgebras de Lie, 2a edição. Editora da Unicamp, Campinas (2010)Google Scholar
- 59.Sasaki S., Hatakeyama Y.: On differentiable manifolds with contact metric structures. J. Math. Soc. Jpn. 14, 249–271 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
- 60.Sasaki S.: On differentiable manifolds with certain structures which are closely related to almost-contact structure. Tohoku Math. J. 2, 459–476 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
- 61.Sparks J.: Sasaki–Einstein manifolds. Surv. Differ. Geom. 16, 265 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 62.Takizawa S.: On contact structures of real and complex manifolds. Tôhoku Math. J. (2) 15, 227–252 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
- 63.Taylor J.L.: Several Complex Variables with Connections to Algebraic Geometry and Lie Groups, Graduate Studies in Mathematics (Book 46). American Mathematical Society, Providence (2002)Google Scholar
- 64.Van Coevering C.: Examples of asymptotically conical Ricci-flat Kähler manifolds. Math. Z. 267(1-2), 465–496 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 65.Van Coevering, C.: Ricci-flat Kähler metrics on crepant resolutions of Kähler cones. Math. Ann. https://doi.org/10.1007/s00208-009-0446-1 (2009)
- 66.Voisin C., Schneps L.: Hodge Theory and Complex Algebraic Geometry I: Volume 1, Cambridge Studies in Advanced Mathematics, 1st edn. Cambridge University Press, Cambridge (2008)Google Scholar
- 67.Wang H.C.: Closed manifolds with homogeneous complex structure. Am. J. Math. 76, 1–32 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
- 68.Wang M.Y., Ziller W.: Einstein metrics on principal torus bundles. J. Differ. Geom. 31, 215 (1990)MathSciNetCrossRefzbMATHGoogle Scholar