Advertisement

Entropy Distribution of Localised States

  • Roberto LongoEmail author
Article
  • 7 Downloads

Abstract

We study the geometric distribution of the relative entropy of a charged localised state in Quantum Field Theory. With respect to translations, the second derivative of the vacuum relative entropy is zero out of the charge localisation support and positive in mean over the support of any single charge. For a spatial strip, the asymptotic mean entropy density is \({\pi E}\) , with E the corresponding vacuum charge energy. In a conformal QFT, for a charge in a ball of radius r, the relative entropy is non linear, the asymptotic mean radial entropy density is \({\pi E}\) and Bekenstein’s bound is satisfied. We also study the null deformation case. We construct, operator algebraically, a positive selfadjoint operator that may be interpreted as the deformation generator, we thus get a rigorous form of the Averaged Null Energy Condition that holds in full generality. In the one dimensional conformal U(1)-current model, we give a complete and explicit description of the entropy distribution of a localised charged state in all points of the real line; in particular, the second derivative of the relative entropy is strictly positive in all points where the charge density is non zero, thus the Quantum Null Energy Condition holds here for these states and is not saturated in these points.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This paper is the follow up of a question privately set to the author by Edward Witten at the Okinawa Strings 2018 conference. The author warmly thanks him for sharing his insight and constant encouragement. We wish to thank also Hirosi Ooguri and the conference organisers for the kind invitation, and Nima Lashkari for comments. We acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

References

  1. 1.
    Araki H.: Expansional in Banach algebras. Ann. Sci. École Norm. Sup. (4) 6, 67–84 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Araki H.: Relative entropy of states of von Neumann algebras. Publ. RIMS Kyoto Univ. 11, 809–833 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Araki H., Zsido L.: Extension of the structure theorem of Borchers and its application to half-sided modular inclusions. Rev. Math. Phys. 17, 491–543 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Balakrishnan, S., Faulkner, T., Khandker, Z.U., Wang, H.: A general proof of the quantum null energy condition, arXiv:1706.09432 [hep-th]
  5. 5.
    Bekenstein J.D.: Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 23, 287 (1981)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bisognano J., Wichmann E.: On the duality condition for a Hermitean scalar field. J. Math. Phys. 16, 985 (1975)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Blanco D., Casini H.: Localization of negative energy and the Bekenstein bound. Phys. Rev. Lett. 111, 221601 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Borchers H.: On revolutionizing quantum field theory with Tomita’s modular theory. J. Math. Phys. 41, 3604 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bousso R., Fisher Z., Koeller J., Leichenauer S., Wall A. C.: Proof of the quantum null energy condition. Phys. Rev. D 93, 024017 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bratteli, O., Robinson, D.: Operator Algebras and quantum statistical mechanics, I & II, Berlin: Springer (1987 & 1997)Google Scholar
  11. 11.
    Brunetti R., Guido D., Longo R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156, 201–219 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Buchholz D., Mack G., Todorov I.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B (Proceedings Supplement) 5, 20–56 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Casini, H., Testé, E., Torroba, G.: Modular Hamiltonians on the null plane and the Markov property of the vacuum state, arXiv:1703.10656 [hep-th]
  15. 15.
    Connes A.: Une classification des facteurs de type III. Ann. Sci. Ec. Norm. Sup. 6, 133–252 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Connes A., Størmer E.: Homogeneity of the state space of factors of type III 1. J. Funct. Anal. 28(2), 187–196 (1978)CrossRefzbMATHGoogle Scholar
  17. 17.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics, I. Commun. Math. Phys. 23, 199–230 (1971)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. II. Commun. Math. Phys. 35, 49–85 (1974)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Epstein H., Glaser V., Jaffe A.: Nonpositivity of the energy density in quantized field theories. Nuovo Cimento 36, 1016 (1965)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fewster C.J., Hollands S.: Quantum energy inequalities in two-dimensional conformal field theory. Rev. Math. Phys. 17, 577 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ford L.H., Roman T.A.: Averaged energy conditions and quantum inequalities. Phys. Rev. D 51, 4277 (1995)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Guido D., Longo R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys. 148(3), 521–551 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Guido D., Longo R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181, 11–35 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Haag R.: Local Quantum Physics—Fields, Particles, Algebras, 2nd edn. Springer, New York (1996)zbMATHGoogle Scholar
  25. 25.
    Hartman, T.: Bounds on energy, entropy, and transport, Talk at the Strings 2018 conference, https://indico.oist.jp/indico/event/5/picture/114.pdf
  26. 26.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time, Cambridge Monographs on Mathematical Physics Cambridge University Press, Cambridge (2011)Google Scholar
  27. 27.
    Hislop P.D., Longo R.: Modular structure of the local algebras associated with the free massless scalar field theory. Commun. Math. Phys. 84, 71–85 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hollands, S.: Relative entropy close to the edge, arXiv:1805.10006 [hep-th]
  29. 29.
    Jones V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kawahigashi Y., Longo R.: Noncommutative spectral invariants and black hole entropy. Commun. Math. Phys. 257, 193–225 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Leichenauer, S., Levine, A., Shahbazi-Moghaddam, A.: Energy is entanglement, arXiv:1802.02584 [hep-th]
  32. 32.
    Longo, R.: Algebraic and modular structure of von Neumann algebras of Physics, Proceedings of Symposia in Pure Math. 38, Part 2, 551 (1982)Google Scholar
  33. 33.
    Longo R.: Index of subfactors and statistics of quantum fields. I. Commun. Math. Phys. 126(2), 217–247 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Longo R.: Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial. Commun. Math. Phys. 130(2), 285–309 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Longo R.: An analogue of the Kac-Wakimoto formula and black hole conditional entropy. Commun. Math. Phys. 186, 451–479 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Longo, R.: The Bisognano–Wichmann theorem for charged states and the conformal boundary of a black hole, Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, 1999), Electron. J. Differ. Equ. Conf. 4 (2000), 159–164Google Scholar
  37. 37.
    Longo R.: Notes for a quantum index theorem. Commun. Math. Phys. 222, 45–96 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Longo R.: On Landauer’s principle and bound for infinite systems. Commun. Math. Phys. 363, 531–560 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Longo R., Roberts J.E.: A theory of dimension. K-Theory 11, 103–159 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Longo R., Xu F.: Comment on the Bekenstein bound. J. Geom. Phys. 130, 113–120 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Longo R., Xu F.: Relative entropy in CFT. Adv. Math. 337, 139–170 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ohya M., Petz D.: “Quantum entropy and its use”, Texts and Monographs in Physics. Springer, Berlin (1993)zbMATHGoogle Scholar
  43. 43.
    Takesaki, M.: “Theory of operator algebras”, I & II, Springer, New York (2002 & 2003)Google Scholar
  44. 44.
    Verch R.: The averaged null energy condition for general quantum field theories in two-dimensions. J. Math. Phys. 41, 206–217 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Weiner M.: Conformal covariance and positivity of energy in charged sectors. Commun. Math. Phys. 265, 493–506 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Wiesbrock H.-W.: Half-sided modular inclusions of von Neumann algebras. Commun. Math. Phys. 157, 83 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Witten E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80(3), 381–402 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Witten, E.: Notes on some entanglement properties of quantum field theory, arXiv:1803.04993 [hep-th]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomeItaly

Personalised recommendations