Communications in Mathematical Physics

, Volume 369, Issue 2, pp 811–836 | Cite as

A Geometric Construction of Solutions to 11D Supergravity

  • Teng FeiEmail author
  • Bin Guo
  • Duong H. Phong


Necessary and sufficient conditions are provided for a class of warped product manifolds with non-vanishing flux to be supersymmetric solutions of 11D supergravity. Many non-compact, but complete solutions can be obtained in this manner, including the multi-membrane solution initially found by Duff and Stelle. In a different direction, an explicit 5-parameter moduli space of solutions to 11D supergravity is also constructed which can be viewed as non-supersymmetric deformations of the Duff–Stelle solution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank David Andriot, Michael Duff, and Daniël Prins for bringing some important references to our attention. We also thank the anonymous referees for making the exposition more readable.


  1. 1.
    Andriot D., Blåbäck J., van Riet T.: Minkowski flux vacua of type II supergravities. Phys. Rev. Lett. 118, 169901 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    Baum, H., Friedrich, Th., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds, Teubner-Texte zur Mathematik, vol. 124. B.G. Teubner, Leipzig (1991)Google Scholar
  3. 3.
    Beauville, A.: Some remarks on Kähler manifolds with c 1 = 0, Classification of algebraic and analytic manifolds (Katata, 1982) Progress in Mathematics, vol. 39, pp. 1–26. Birkhäuser, Boston (1983)Google Scholar
  4. 4.
    Becker K., Becker M.: \({{\mathcal{M}}}\) -theory on eight-manifolds. Nucl. Phys. B 477, 155–167 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cheng S.-Y., Li P.W.-K.: Heat kernel estimates and lower bounds of eigenvalues. Comment. Math. Helvetici 56, 327–338 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clancy R.: New examples of compact manifolds with holonomy Spin(7). Ann. Global Anal. Geom. 40, 203–222 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Conlon R., Hein H.-J.: Asymptotically conical Calabi–Yau manifolds, I. Duke Math. J. 162, 2855–2902 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Conlon R., Hein H.-J.: Asymptotically conical Calabi–Yau metrics on quasi-projective varieties. Geom. Funct. Anal. 25, 517–552 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Conlon, R., Rochon, F.: New examples of complete Calabi–Yau metrics on \({{{\mathbb{C} }}^n}\) for n ≥ 3. arXiv:1705.08788
  10. 10.
    Cremmer E., Julia B., Scherk J.: Supergravity theory in 11 dimensions. Phys. Lett. B 76, 409–412 (1978)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    D’Hoker E.: Exact M-theory solutions, integrable systems, and superalgebras. SIGMA 11, 609–628 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    de Wit B., Nicolai H.: The consistency of the S 7 truncation in d = 11 supergravity. Nucl. Phys. B 281, 211–240 (1986)CrossRefGoogle Scholar
  13. 13.
    de Wit B., Smit D., Hari Dass N.D.: Residual supersymmetry of compactified d = 10 supergravity. Nucl. Phys. B 283, 165–191 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Dobarro F., Ünal B.: Curvature of multiply warped products. J. Geom. Phys. 55, 75–106 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Duff, M.J.: The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, Studies in High Energy Physics and Cosmology. Taylor & Francis, London (1999)Google Scholar
  16. 16.
    Duff M.J., Evans J.M., Khuri R.R., Lu J.-X., Minasian R.: The octonic membrane. Nucl. Phys. B (Proc. Suppl.) 68, 295–302 (1998)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Duff M.J., Lü H., Pope C.N., Sezgin E.: Supermembranes with fewer supersymmetries. Phys. Lett. B 371, 206–214 (1996)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Duff M.J., Nilsson B.E.W., Pope C.N.: Kaluza–Klein supergravity. Phys. Rep. 130, 1–142 (1986)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Duff M.J., Stelle K.S.: Multi-membrane solutions of D=11 supergravity. Phys. Lett. B 253, 113–118 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Englert F.: Spontaneous compactification of eleven-dimensional supergravity. Phys. Lett. B 119, 339–342 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    Fei, T., Guo, B., Phong, D.H.: Parabolic dimensional reductions of 11D supergravity. arXiv:1806.00583
  22. 22.
    Figueroa-O’Farrill J., Papadopoulos G.: Maximally supersymmetric solutions of ten and eleven-dimensional supergravities. JHEP 048, 25 (2003)Google Scholar
  23. 23.
    Freund P.G.O., Rubin M.A.: Dynamics of dimensional reduction. Phys. Lett. B 97, 233–235 (1980)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Friedrich Th., Kath I., Moroianu A., Semmelmann U.: On nearly parallel G 2-structures. J. Geom. Phys. 23, 259–286 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gauntlett J., Pakis S.: The geometry of D = 11 Killing spinors. JHEP 039, 32 (2003)CrossRefGoogle Scholar
  26. 26.
    Horava P., Witten E.: Heterotic and type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506–524 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hull, C.M.: Supersymmetry with torsion and space-time supersymmetry. 1st Torino Meeting on Superunification and Extra Dimensions, pp. 347 – 375. World Scientific, Philadelphia (1986)Google Scholar
  28. 28.
    Hull, C.M.: Holonomy and symmetry in M-branes. arXiv:hep-th/0305039
  29. 29.
    Joyce D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monograph: Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  30. 30.
    Li P.W.-K., Yau S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Li, Y.: A new complete Calabi–Yau metric on \({{{\mathbb{C} }}^3}\). arXiv:1705.07026
  32. 32.
    Martelli D., Sparks J.: G structures, fluxes, and calibrations in M theory. Phys. Rev. D 68, 085014 (2003)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Moroianu A., Semmelmann U.: Parallel spinors and holonomy groups. J. Math. Phys. 41, 2395–2402 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pope C., van Nieuwenhuizen P.: Compactifications of d = 11 supergravity on Kähler manifolds. Commun. Math. Phys. 122, 281–292 (1989)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Pope C., Warner N.: An SU(4) invariant compactification of d = 11 supergravity on a stretched seven-sphere. Phys. Lett. B 150, 352–356 (1985)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Prins D., Tsimpis D.: Type IIA supergravity and M-theory on manifolds with SU(4) structure. Phys. Rev. D 89, 064030 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Strominger A.E.: Superstrings with torsion. Nucl. Phys. B 274, 253–284 (1986)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Székelyhidi, G.: Degenerations of \({{{\mathbf{C} }}^n}\) and Calabi–Yau metrics. arXiv:1706.00357
  39. 39.
    Taylor C.J.-Y.: New examples of compact 8-manifolds of holonomy Spin(7). Math. Res. Lett. 6, 557–561 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Tian G., Yau S.-T.: Complete Kähler manifolds with zero Ricci curvature, II. Invent. Math. 106, 27–60 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Townsend P.: The eleven-dimensional supermembrane revisited. Phys. Lett. B 350, 184–188 (1995)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Tsimpis D.: M-theory on eight-manifolds revisited: \({{\mathcal{N}}=1}\) supersymmetry and genrealized Spin(7) structures. JHEP 04, 26 (2006)Google Scholar
  43. 43.
    Witten E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85–126 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Wang M.Y.-K.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7, 59–68 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Yau S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31, 339–411 (1978)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations