Advertisement

Spectral Flow of Monopole Insertion in Topological Insulators

  • Alan L. Carey
  • Hermann Schulz-BaldesEmail author
Article
  • 19 Downloads

Abstract

Inserting a magnetic flux into a two-dimensional one-particle Hamiltonian leads to a spectral flow through a given gap which is equal to the Chern number of the associated Fermi projection. This paper establishes a generalization to higher even dimension by inserting non-abelian monopoles of the Wu-Yang type. The associated spectral flow is then equal to a higher Chern number. For the study of odd spacial dimensions, a new so-called ‘chirality flow’ is introduced which, for the insertion of a monopole, is then linked to higher winding numbers. This latter fact follows from a new index theorem for the spectral flow between two unitaries which are conjugates of each other by a self-adjoint unitary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the referees and Nora Doll for several constructive comments on the first draft of this paper. The work of A. L. C. was supported by the Australian Research Council, that of H. S.-B. partially by the DFG.

References

  1. 1.
    Arai A.: Representation-theoretic aspects of two-dimensional quantum systems in singular vector potentials: canonical commutation relations, quantum algebras, and reduction to lattice quantum systems. J. Math. Phys. 39, 2476–2498 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avron, J., Pnueli, A.: Landau Hamiltonians on symmetric spaces. In: Ideas and Methods in Quantum and Statistical Physics, vol. 2, pp. 96–111, Cambridge University Press, Cambridge (1992)Google Scholar
  3. 3.
    Avron J.E., Sadun L., Segert J., Simon B.: Topological invariants in Fermi systems with time-reversal invariance. Phys. Rev. Lett. 61, 1329 (1988)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Avron J., Seiler R., Simon B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bellissard, J.: Ordinary quantum Hall effect and non-commutative cohomology. In: Ziesche W., Weller, P. (eds.) Proceedings of the Bad Schandau Conference on Localization, 1986, Teubner Texte zur Physik, 16, Teubner-Verlag, Leipzig (1988)Google Scholar
  6. 6.
    Bellissard J., van Elst A., Schulz-Baldes H.: The non-commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benameur, M.T., Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: Wojciechowski K.P.: Analytic formulae for Spectral Flow in von Neumann algebras. In: Booß-Bavnbek B., Klimek S., Lesch M., Zhang W. (eds.) Analysis, Geometry and topology of elliptic operators. World Scientific, Singapore (2006)Google Scholar
  8. 8.
    Carey, A., Phillips, J., Schulz-Baldes, H.: Spectral flow for real skew-adjoint Fredholm operators, to appear in J. Spect. Theory. arXiv:1604.06994
  9. 9.
    Connes A.: Noncommutative Geometry. Academic Press, New York (1995)zbMATHGoogle Scholar
  10. 10.
    De Nittis, G., Gomi, K.: Chiral vector bundles. Math. Z. (2018)Google Scholar
  11. 11.
    De Nittis G., Schulz-Baldes H.: Spectral flows of dilations of Fredholm operators. Canad. Math. Bull. 58, 51–68 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    De Nittis G., Schulz-Baldes H.: Spectral flows associated to flux tubes. Ann. H. Poincare 17, 1–35 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fradkin E.: Field Theories of Condensed Matter Physics. Cambridge University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fujii K.: A classical solution of the non-linear complex Grassmann \({\sigma}\) -model with higher derivatives. Commun. Math. Phys. 101, 207–211 (1985)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Fujikawa K., Suzuki H.: Path Integrals and Quantum Anomalies. Oxford University Press, Oxford (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Gilkey P.B., Smith L.: The twisted index problem for manifolds with boundary. J. Diff. Geom. 18, 393–444 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grossmann J., Schulz-Baldes H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343, 477–513 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Haldane F.D.M.: Model for a quantum Hall-effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015–2018 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kirk P., Lesch M.: The \({\eta}\) -invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary. Forum Math. 16, 553–629 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kitaev, Y.A.: Periodic table for topological insulators and superconductors. In: (Advances in Theoretical Physics: Landau Memorial Conference) AIP Conference Proceedings, vol. 1134, pp. 22–30 (2009)Google Scholar
  22. 22.
    Kolodrubetz M.: Measuring the second Chern number from nonadiabatic effects. Phys. Rev. Lett. 117, 015301 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Laughlin R.B.: Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5634 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    Lawson H.B., Michelsohn M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  25. 25.
    Le V.-H., Nguyen T.-S.: A non-Abelian SO (8) monopole as generalization of Dirac-Yang monopoles for a 9-dimensional space. J. Math. Phys. 52, 032105 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Leung B., Prodan E.: A non-commutative formula for the isotropic magneto-electric response. J. Phys. A Math. Theor. 46, 085205 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lohse M., Schweizer C., Price H.M., Zilberberg O., Bloch I.: Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature 553, 55 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    Macris, N.: On the equality of edge and bulk conductance in the integer quantum Hall effect: microscopic analysis, unpublished manuscript (2003)Google Scholar
  29. 29.
    Mondragon-Shem I., Song J., Hughes T.L., Prodan E.: Topological criticality in the chiral-symmetric AIII class at strong disorder. Phys. Rev. Lett. 113, 046802 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Nakahara M.: Geometry, Topology and Physics. CRC Press, Boca Raton (2003)zbMATHGoogle Scholar
  31. 31.
    Phillips J.: Self-adjoint Fredholm operators and spectral flow. Canad. Math. Bull. 39, 460–467 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Phillips J.: Spectral flow in type I and type II factors—a new approach. Fields Inst. Commun. 17, 137–153 (1997)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Prodan E., Leung B., Bellissard J.: The non-commutative nth-Chern number (\({n \geq 1}\)). J. Phys. A46, 485202 (2013)zbMATHGoogle Scholar
  34. 34.
    Prodan E., Schulz-Baldes H.: Non-commutative odd Chern numbers and topological phases of disordered chiral systems. J. Funct. Anal. 271, 1150–1176 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Prodan E., Schulz-Baldes H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Springer, Switzerland (2016)CrossRefzbMATHGoogle Scholar
  36. 36.
    Schnyder A.P., Ryu S., Furusaki A., Ludwig A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B78, 195125 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Schulz-Baldes H.: Signature and spectral flow for J-unitary \({\mathbb{S}^1}\)-Fredholm operators. Integral Equ. Oper. Theory 78, 323–374 (2014)CrossRefzbMATHGoogle Scholar
  38. 38.
    Shnir Y.M.: Magnetic Monopoles. Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  39. 39.
    Su W.P., Schrieffer J.R., Heeger A.J.: Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980)ADSCrossRefGoogle Scholar
  40. 40.
    Sugawa, S., Salces-Carcoba, F., Perry, A.R., Yue, Y., Spielman, I.P.: Observation of a non-Abelian Yang Monopole: From New Chern Numbers to a Topological Transition, preprint arXiv:1610.06228
  41. 41.
    Wu, T.T., Yang, C.N.: Some Solutions of the Classical Isotopic Gauge Field Equations. In: Mark, H., Fernbach, S. (eds.) Properties of Matter Under Unusual Conditions, pp. 344–354, Interscience, New York (1968)Google Scholar
  42. 42.
    Yang C.N.: Generalization of Dirac’s monopole to SU(2) gauge fields. J. Math. Phys. 19, 320–328 (1978)ADSCrossRefGoogle Scholar
  43. 43.
    Zilberberg O., Huang S., Guglielmon J., Wang M., Chen K.P., Kraus Y.E., Rechtsman M.C.: Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    Zhang S.-C., Hu J.: A four-dimensional generalization of the quantum Hall effect. Science 294, 823–828 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia
  2. 2.School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia
  3. 3.Department MathematikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations