A Multi-scale Spin-Glass Mean-Field Model
- 11 Downloads
Abstract
In this paper a multi-scale version of the Sherrington and Kirkpatrick model is introduced and studied. The pressure per particle in the thermodynamical limit is proved to obey a variational principle of Parisi type. The result is achieved by means of lower and upper bounds. The lower bound is obtained with a Ruelle cascade using the interpolation technique, while the upper bound exploits factorisation properties of the equilibrium measure and the synchronisation technique.
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
Wewant to thank several useful discussionswithDiegoAlberici, FrancescoGuerra, Jorge Kurchan and especially Dmitry Panchenko whose observation led to a valuable improvement of proposition 5.1. P.C. was partially supported by PRIN project Statistical Mechanics and Complexity (2015K7KK8L), E.M. was partially supported by Progetto Almaidea 2018.
References
- 1.Aizenman M., Contucci P.: On the stability of the quenched state in mean-field spin-glass models. J. Stat. Phys. 92(5/6), 765–783 (1998)ADSMathSciNetzbMATHGoogle Scholar
- 2.Auffinger A., Chen A.W.: The Parisi formula has a unique minimizer. Commun. Math. Phys. 335(3), 1429–1444 (2015)ADSMathSciNetzbMATHGoogle Scholar
- 3.Aizenman M., Sims R., Starr S.: An extended variational principle for the SK spin-glass model. Phys. Rev. B 68, 214403 (2003)ADSGoogle Scholar
- 4.Arguin L.-P.: Spin glass computations and Ruelle’s probability cascades. J. Stat. Phys. 126(4-5), 951–976 (2007)ADSMathSciNetzbMATHGoogle Scholar
- 5.Barra A., Contucci P., Mingione E., Tantari D.: Multi-species mean-field spin-glasses. Rigorous results. Ann. Henri Poincaré 16, 691–708 (2015)ADSMathSciNetzbMATHGoogle Scholar
- 6.Barra A., Guerra F., Mingione E.: Interpolating the Sherrington–Kirkpatrick replica trick. Philos. Mag. 92(1-3), 78–97 (2012)ADSGoogle Scholar
- 7.Bolthausen E., Kistler N.: On a nonhierarchical version of the generalized random energy model, II: ultrametricity. Stoch. Process. Appl. 119(7), 2357–2386 (2009)MathSciNetzbMATHGoogle Scholar
- 8.Bolthausen E., Sznitman A.-S.: On Ruelle’s probability cascades and an abstract cavity method. Commun. Math. Phys. 197(2), 247–276 (1998)ADSMathSciNetzbMATHGoogle Scholar
- 9.Bovier A., Klimovsky A.: The Aizenman–Sims–Starr and Guerras schemes for the SK model with multidimensional spins electron. J. Probab. 14(8), 161–241 (2009)MathSciNetzbMATHGoogle Scholar
- 10.Bovier A., Kurkova I.: Derridas generalized random energy models I–II. Annals de l’ Institut Henri Poincaré, 40:4 (2004)Google Scholar
- 11.Castellana M., Barra A., Guerra F.: Free-energy bounds for hierarchical spin models. J. Stat. Phys. 155(2), 211222 (2014)MathSciNetzbMATHGoogle Scholar
- 12.Castellana M., Parisi G.: Non perturbative effects in spin glasses. Scirep. Nat. 5, 8697 (2015)ADSGoogle Scholar
- 13.Contucci P., Giardina C., Giberti C.: Stability of the spin glass phase under perturbations. Europhys. Lett. 96(1), 17003–17006 (2011)ADSGoogle Scholar
- 14.Cugliandolo L., Kurchan J.: Thermal properties of slow dynamics. Phys. A Stat. Mech. Appl. 263(14), 242–251 (1999)Google Scholar
- 15.Cugliandolo J., Kurchan J.: A scenario for the dynamics in the small entropy production limit. J. Phys. Soc. Jpn. 69(Suppl.A), 247–256 (2000)Google Scholar
- 16.Derrida B., Gardner E.: Solution of the generalized random energy model. J. Phys. C 19, 2253 (1986)ADSGoogle Scholar
- 17.Gallavotti G.: Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods. Rev. Mod. Phys. 57, 471 (1985)ADSMathSciNetGoogle Scholar
- 18.Ghirlanda S., Guerra F.: General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A Math. Gen. 31, 9149–9155 (1998)ADSMathSciNetzbMATHGoogle Scholar
- 19.Guerra, F.: Mathematical aspects of mean field spin glass theory. In: Proceedings of the “4th European Congress of Mathematics”, Stockholm (2004)Google Scholar
- 20.Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003)ADSMathSciNetzbMATHGoogle Scholar
- 21.Guerra F., Toninelli F.L.: The thermodynamical limit in mean field spin glass model. Commun. Math. Phys. 230, 71–79 (2002)ADSzbMATHGoogle Scholar
- 22.Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003)ADSMathSciNetzbMATHGoogle Scholar
- 23.Jagannath, A., Ko, J., Sen, S.: A connection between MAX k-CUT and the inhomogeneous Potts spin glass in the large degree limit. arXiv:1703.03455
- 24.Mezard M., Parisi G., Virasoro M. A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)zbMATHGoogle Scholar
- 25.Monasson R.: Structural glass transition and the entropy of the metastable states. Phys. Rev. Lett. 75(15), 2847–2850 (1995)ADSGoogle Scholar
- 26.Stein D., Newman C.: Spin Glasses and Complexity. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
- 27.Ruelle D.: A mathematical reformulation of Derrida’s REM and GREM. Commun. Math. Phys. 108, 225 (1987)ADSMathSciNetzbMATHGoogle Scholar
- 28.Panchenko D.: The Parisi ultrametricity conjecture. Ann. Math. 177(1), 383–393 (2013)MathSciNetzbMATHGoogle Scholar
- 29.Panchenko D.: The Sherrington–Kirkpatrick Model. Springer, New York (2013)zbMATHGoogle Scholar
- 30.Panchenko D.: Free energy in the mixed p-spin models with vector spins. Ann. Probab. 46(2), 865–896 (2018)MathSciNetzbMATHGoogle Scholar
- 31.Panchenko D.: Free energy in the Potts spin, glass. Ann. Probab. 46(2), 829–864 (2018)MathSciNetzbMATHGoogle Scholar
- 32.Panchenko D.: The free energy in a multispecies Sherringhton Kirkpatrick model. Ann. Probab. 46(6), 3494–3513 (2015)zbMATHGoogle Scholar
- 33.Panchenko, D., Talagrand, M.: arXiv:0708.3641
- 34.Polchinski J.: Renormalization and effective Lagrangians. Nucl.Phys. B 231, 269–295 (1984)ADSGoogle Scholar
- 35.Talagrand M.: Large deviations, Guerra’s and A.S.S. Schemes, and the Parisi Hypothesis. J. Stat. Phys. 126(4-5), 837–894 (2007)ADSMathSciNetzbMATHGoogle Scholar
- 36.Talagrand M.: The Parisi formula. Ann. Math. 163(1), 221–263 (2006)MathSciNetzbMATHGoogle Scholar