Advertisement

Relaxed Highest-Weight Modules I: Rank 1 Cases

  • Kazuya KawasetsuEmail author
  • David Ridout
Article
  • 12 Downloads

Abstract

Relaxed highest-weight modules play a central role in the study of many important vertex operator (super)algebras and their associated (logarithmic) conformal field theories, including the admissible-level affine models. Indeed, their structure and their (super)characters together form the crucial input data for the standard module formalism that describes the modular transformations and Grothendieck fusion rules of such theories. In this article, character formulae are proved for relaxed highest-weight modules over the simple admissible-level affine vertex operator superalgebras associated to \({\mathfrak{s}\mathfrak{l}_2}\) and \({\mathfrak{osp} (1 \vert 2)}\). Moreover, the structures of these modules are specified completely. This proves several conjectural statements in the literature for \({\mathfrak{s}\mathfrak{l}_2}\), at arbitrary admissible levels, and for \({\mathfrak{osp} (1 \vert 2)}\) at level \({-\frac{5}{4}}\). For other admissible levels, the \({\mathfrak{osp}(1 \vert 2)}\) results are believed to be new.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dražen Adamović, Tomoyuki Arakawa, Thomas Creutzig, Tianshu Liu, and SimonWood for useful discussions aswell as their encouragement.We also thankWill Stewart for pointing out a small error in a previous version and Ryo Sato for clarifying for us the relation between hiswork and relaxed \({\widehat{\mathfrak{sl}}_2}\) characters. KK’s research is supported by the Australian Research Council Discovery Project DP160101520. DR’s research is supported by the Australian Research Council Discovery Project DP160101520 and the Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers CE140100049.

References

  1. 1.
    Feigin B., Semikhatov A., Tipunin I.Y.: Equivalence between chain categories of representations of affine \({sl (2)}\) and N = 2 superconformal algebras. J. Math. Phys. 39, 3865–3905 (1998) arXiv:hep-th/9701043 ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Feigin B., Semikhatov A., Sirota V., Tipunin I.Y.: Resolutions and characters of irreducible representations of the N = 2 superconformal algebra. Nucl. Phys. B 536, 617–656 (1998) arXiv:hep-th/9805179 ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Sato, R.: Equivalences between logarithmic weight modules via \({\mathcal{N}=2}\) coset constructions. arXiv:1605.02343 [math.RT]
  4. 4.
    Sato, R.: Modular invariant representations over the \({\mathcal{N}=2}\) superconformal algebra. Int. Math. Res. Not.  https://doi.org/10.1093/imrn/rny007. arXiv:1706.04882 [math.QA] (to appear)
  5. 5.
    Creutzig, T., Liu, T., Ridout, D., Wood, S.: Non-unitary N = 2 minimal models (in preparation) Google Scholar
  6. 6.
    Ridout D., Wood S.: Relaxed singular vectors, Jack symmetric functions and fractional level \({\widehat{\mathfrak{sl}}\left( 2 \right)}\) models. Nucl. Phys. B 894, 621–664 (2015) arXiv:1501.07318 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Adamović D., Milas A.: Vertex operator algebras associated to modular invariant representations of \({A_1^{\left(1\right)}}\). Math. Res. Lett. 2, 563–575 (1995) arXiv:q-alg/9509025 CrossRefzbMATHGoogle Scholar
  8. 8.
    Maldacena J., Ooguri H.: Strings in AdS 3 and the \({\mathrm{SL} \left( 2, R \right)}\) WZW model. I: the spectrum. J. Math. Phys. 42, 2929–2960 (2001) arXiv:hep-th/0001053 ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Gaberdiel M.: Fusion rules and logarithmic representations of a WZW model at fractional level. Nucl. Phys. B 618, 407–436 (2001) arXiv:hep-th/0105046 ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Ridout D.: \({\widehat{\mathfrak{sl}} \left( 2 \right)_{-1/2}}\) and the triplet model. Nucl. Phys. B 835, 314–342 (2010) arXiv:1001.3960 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Ridout D.: Fusion in fractional level \({\widehat{\mathfrak{sl}} \left( 2 \right)}\)-theories with \({k=-\tfrac{1}{2}}\). Nucl. Phys. B 848, 216–250 (2011) arXiv:1012.2905 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Creutzig T., Ridout D., Wood S.: Coset constructions of logarithmic \({\left( 1,p \right)}\)-models. Lett. Math. Phys. 104, 553–583 (2014) arXiv:1305.2665 [math.QA]ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Adamović D.: A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra \({A_2^{(1)}}\). Transform Groups 21, 299–327 (2016) arXiv:1407.1527 [math.QA]CrossRefzbMATHGoogle Scholar
  14. 14.
    Arakawa T., Futorny V., Ramirez L.-E.: Weight representations of admissible affine vertex algebras. Commun. Math. Phys. 353, 1151–1178 (2017) arXiv:1605.07580 [math.RT]ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    Creutzig T., Ridout D.: Logarithmic conformal field theory: beyond an introduction. J. Phys. A 46, 494006 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ridout D., Wood S.: The Verlinde formula in logarithmic CFT. J. Phys. Conf. Ser. 597, 012065 (2015) arXiv:1409.0670 [hep-th]CrossRefGoogle Scholar
  18. 18.
    Creutzig T., Ridout D.: Relating the archetypes of logarithmic conformal field theory. Nucl. Phys. B 872, 348–391 (2013) arXiv:1409.0670 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Creutzig, T., Ridout, D.: W-algebras extending \({\widehat{\mathfrak{gl}} \left( 1 \vert 1 \right)}\). Proc. Math. Stat. 36, 349–368 (2011). arXiv:1111.5049 [hep-th]
  20. 20.
    Verlinde E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360–376 (1988)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Huang Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008) arXiv:math.QA/0406291 CrossRefzbMATHGoogle Scholar
  22. 22.
    Creutzig T., Ridout D.: Modular data and Verlinde formulae for fractional level WZW models I. Nucl. Phys. B 865, 83–114 (2012) arXiv:1205.6513 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Creutzig T., Ridout D.: Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875, 423–458 (2013) arXiv:1306.4388 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Ridout D., Snadden J., Wood S.: An admissible level \({\widehat{\mathfrak{osp}} \left( 1 \vert 2 \right)}\)-model: modular transformations and the Verlinde formula. Lett. Math. Phys. 108, 2363–2423 (2018) arXiv:1705.04006 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Creutzig, T., Kanade, S., Liu, T., Ridout, D.: Cosets, characters and fusion for admissible-level \({\mathfrak{osp}\left( 1 \vert 2 \right)}\) minimal models. Nucl. Phys. B 938, 22–55 (2018). arXiv:1806.09146 [hep-th]
  26. 26.
    Ridout D., Wood S.: Bosonic ghosts at c = 2 as a logarithmic CFT. Lett. Math. Phys. 105, 279–307 (2015) arXiv:1408.4185 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Semikhatov, A., Sirota, V.: Embedding diagrams of N = 2 Verma modules and relaxed \({\widehat{sl}\left( 2 \right)}\) Verma modules. arXiv:hep-th/9712102
  28. 28.
    Adamović, D.: Realizations of simple affine vertex algebras and their modules: the cases \({\widehat{sl(2)}}\) and \({\widehat{osp(1,2)}}\). arXiv:1711.11342 [math.QA]
  29. 29.
    Semikhatov, A.: Inverting the Hamiltonian reduction in string theory. In: 28th International Symposium on Particle Theory, Wendisch-Rietz, Germany, pp. 156–167 (1994). arXiv:hep-th9410109
  30. 30.
    Adamović D.: Lie superalgebras and irreducibility of \({A_1^{(1)}}\)-modules at the critical level. Commun. Math. Phys. 270, 141–161 (2007) arXiv:math.QA/0602181 ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Kac V., Wakimoto M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. USA 85, 4956–4960 (1988)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Kac V., Wakimoto M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math. 70, 156–236 (1988)CrossRefzbMATHGoogle Scholar
  33. 33.
    Mathieu O.: Classification of irreducible weight modules. Ann. Inst. Fourier (Grenoble) 50, 537–592 (2000)CrossRefzbMATHGoogle Scholar
  34. 34.
    Mazorchuk V.: Lectures on \({\mathfrak{sl}_2 (\mathbb{C})}\)-Modules. Imperial College Press, London (2010)Google Scholar
  35. 35.
    Iohara K., Koga Y.: Fusion algebras for N = 1 superconformal field theories through coinvariants I: \({\widehat{osp} \left(1\vert2\right)}\)-symmetry. J. Reine Angew. Math. 531, 1–34 (2001)CrossRefzbMATHGoogle Scholar
  36. 36.
    Arnaudon D., Bauer M., Frappat L.: On Casimir’s ghost. Commun. Math. Phys. 187, 429–439 (1997) arXiv:q-alg/9605021 ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Ridout D.: \({\widehat{\mathfrak{sl}} \left( 2 \right)_{-1/2}}\) : a case study. Nucl. Phys. B 814, 485–521 (2009) arXiv:0810.3532 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Wood, S.: Admissible level \({\mathfrak{osp} \left( 1 \vert 2\right)}\) minimal models and their relaxed highest weight modules arXiv:1804.01200 [math.QA]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of MelbourneParkvilleAustralia

Personalised recommendations