Advertisement

Coarse Geometry and Topological Phases

  • Eske Ellen Ewert
  • Ralf MeyerEmail author
Article
  • 25 Downloads

Abstract

We propose the Roe \({{\rm C}^*}\)-algebra from coarse geometry as a model for topological phases of disordered materials. We explain the robustness of this \({{\rm C}^*}\)-algebra and formulate the bulk–edge correspondence in this framework. We describe the map from the K-theory of the group \({{\rm C}^*}\)-algebra of \({\mathbb {Z}^d}\) to the K-theory of the Roe \({{\rm C}^*}\)-algebra, both for real and complex K-theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation, Commun. Math. Phys., 157(2), 245–278 (1993). http://projecteuclid.org/euclid.cmp/1104253939
  2. 2.
    Bellissard, J.: K-theory of \({C^*}\)-algebras in solid state physics. Statistical mechanics and field theory: mathematical aspects (Groningen, 1985). Lecture notes in physics, vol. 257, Springer, Berlin, pp. 99–156 (1986).  https://doi.org/10.1007/3-540-16777-3_74
  3. 3.
    Bellissard, Jean V., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect, J. Math. Phys., 35(10), 5373–5451 (1994).  https://doi.org/10.1063/1.530758
  4. 4.
    Bellissard, J., Herrmann, D.J.L., Zarrouati, M.: Hull of aperiodic solids and gap labeling theorems. Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, American Mathematical Society, Providence, RI, pp. 207–258 (2000)Google Scholar
  5. 5.
    Bernevig B.A., Hughes T.L., Zhang S.-C.: Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 314(5806), 1757–1761 (2006).  https://doi.org/10.1126/science.1133734 ADSCrossRefGoogle Scholar
  6. 6.
    Blackadar, B., Cuntz, J.: Differential Banach algebra norms and smooth subalgebras of \({C^*}\)-algebras, J. Oper. Theory, 26(2), 255–282 (1991). http://www.theta.ro/jot/archive/1991-026-002/1991-026-002-003.html
  7. 7.
    Bost J.-B.: Principe d’Oka, K-théorie et systèmes dynamiques non commutatifs. Invent. Math. 101(2), 261–333 (1990).  https://doi.org/10.1007/BF01231504 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brodzki J., Cave C., Li K.: Exactness of locally compact groups. Adv. Math. 312, 209–233 (2017).  https://doi.org/10.1016/j.aim.2017.03.020 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen X., Tessera R., Wang X., Yu G.: Metric sparsification and operator norm localization. Adv. Math. 218(5), 1496–1511 (2008).  https://doi.org/10.1016/j.aim.2008.03.016 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cuntz, J., Meyer, R., Rosenberg, J.M.: Topological and bivariant K-theory, Oberwolfach Semi nars. Birkhäuser Verlag, Basel (2007).  https://doi.org/10.1007/978-3-7643-8399-2
  11. 11.
    Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98(10), 106803 (2007).  https://doi.org/10.1103/PhysRevLett.98.106803 ADSCrossRefGoogle Scholar
  12. 12.
    Higson, N., Roe, J.: Analytic K-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford (2000).Google Scholar
  13. 13.
    Higson N., Roe J., Yu G.: A coarse Mayer–Vietoris principle. Math. Proc. Camb. Philos. Soc. 114(1), 85–97 (1993).  https://doi.org/10.1017/S0305004100071425 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kasparov, G.G.: The operator K-functor and extensions of \({C^*}\)-algebras, Izv. Akad. Nauk SSSR Ser. Mat., 44(3), 571–636, 719.http://mi.mathnet.ru/izv1739; English transl., Math. USSR-Izv., 16(3), 513–572 (1981).
  15. 15.
    Kasparov G.G.: Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988).  https://doi.org/10.1007/BF01404917 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kellendonk J.: On the \({C^*}\)-algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18(7), 2251–2300 (2017).  https://doi.org/10.1007/s00023-017-0583-0 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kennedy R., Zirnbauer M.R.: Bott periodicity for \({\mathbb{Z}_2}\) symmetric ground states of gapped free-fermion systems. Commun. Math. Phys. 342(3), 909–963 (2016).  https://doi.org/10.1007/s00220-015-2512-8 ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Kitaev A.: Periodic table for topological insulators and superconductors. AIP Conference Proceedings 1134(1), 22–30 (2009).  https://doi.org/10.1063/1.3149495 ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Kubota Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349(2), 493–525 (2017).  https://doi.org/10.1007/s00220-016-2699-3 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu C.-X., Qi X.-L., Zhang H., Dai X., Fang Z., Zhang S.-C.: Model Hamiltonian for topological insulators. Phys. Rev. B 82(4), 045122–045140 (2010).  https://doi.org/10.1103/PhysRevB.82.045122 ADSCrossRefGoogle Scholar
  21. 21.
    Meyer, R.: Local and analytic cyclic homology, EMS Tracts in Mathematics, vol. 3, European Mathematical Society (EMS), Zürich (2007).  https://doi.org/10.4171/039
  22. 22.
    De Nittis G., Gomi K.: Classification of “Real” Bloch-bundles: topological quantum systems of type \({\mathbf{AI}}\). J. Geom. Phys. 86, 303–338 (2014).  https://doi.org/10.1016/j.geomphys.2014.07.036 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    De Nittis G., Gomi K.: Classification of “quaternionic” Bloch-bundles: topological quantum systems of type AII. Commun. Math. Phys. 339(1), 1–55 (2015).  https://doi.org/10.1007/s00220-015-2390-0 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Phillips N.C.: K-theory for Fréchet algebras. Int. J. Math. 2(1), 77–129 (1991).  https://doi.org/10.1142/S0129167X91000077 CrossRefzbMATHGoogle Scholar
  25. 25.
    Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators, From K-theory to Physics. Mathematical Physics Studies, Springer (2016).  https://doi.org/10.1007/978-3-319-29351-6
  26. 26.
    Ringel Z., Kraus Yaacov E., Stern A.: Strong side of weak topological insulators. Physical Review B 86, 045102 (2012).  https://doi.org/10.1103/PhysRevB.86.045102 ADSCrossRefGoogle Scholar
  27. 27.
    Roe, J.: An index theorem on open manifolds. I, J. Differ. Geom. 27(1), 87–113 (1988). http://projecteuclid.org/euclid.jdg/1214441652
  28. 28.
    Roe, J.: An index theorem on open manifolds. II, J. Differ. Geom. 27(1), 115–136 (1988). http://projecteuclid.org/euclid.jdg/1214441653
  29. 29.
    Roe, J.: Lectures on Coarse Geometry. University Lecture Series, vol. 31, American Mathematical Society, Providence, RI (2003).  https://doi.org/10.1090/ulect/031
  30. 30.
    Roe J.: Warped cones and property A. Geom. Topol. 9, 163–178 (2005).  https://doi.org/10.2140/gt.2005.9.163 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sako H.: Property A and the operator norm localization property for discrete metric spaces. J. Reine Angew. Math. 690, 207–216 (2014).  https://doi.org/10.1515/crelle-2012-0065 MathSciNetzbMATHGoogle Scholar
  32. 32.
    Špakula, J.: K-theory of Uniform Roe Algebras, Ph.D. Thesis, Vanderbilt University (2008). http://etd.library.vanderbilt.edu/available/etd-07102008-220512

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität GöttingenGöttingenGermany

Personalised recommendations