Advertisement

Communications in Mathematical Physics

, Volume 367, Issue 1, pp 89–126 | Cite as

String-Theory Realization of Modular Forms for Elliptic Curves with Complex Multiplication

  • Satoshi Kondo
  • Taizan WatariEmail author
Article
  • 43 Downloads

Abstract

It is known that the L-function of an elliptic curve defined over \({\mathbb{Q}}\) is given by the Mellin transform of a modular form of weight 2. Does that modular form have anything to do with string theory? In this article, we address a question along this line for elliptic curves that have complex multiplication defined over number fields. So long as we use diagonal rational \({\mathcal{N}=(2,2)}\) superconformal field theories for the string-theory realizations of the elliptic curves, the weight-2 modular form turns out to be the Boltzmann-weighted (\({q^{L_0-c/24}}\)-weighted) sum of U(1) charges with \({Fe^{\pi i F}}\) insertion computed in the Ramond sector.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to T. Abe and K. Hori for discussion and useful comments. This work is supported by WPI Initiative, MEXT, Japan (SK, TW).

References

  1. 1.
    Aspinwall P.S., Kallosh R.: Fixing all moduli for M-theory on K3xK3. JHEP 0510, 001 (2005) arXiv:hep-th/0506014 ADSCrossRefGoogle Scholar
  2. 2.
    DeWolfe O.: Enhanced symmetries in multiparameter flux vacua. JHEP 0510, 066 (2005) arXiv:hep-th/0506245 ADSMathSciNetGoogle Scholar
  3. 3.
    Braun A.P., Kimura Y., Watari T.: The Noether-Lefschetz problem and gauge-group-resolved landscapes: F-theory on K3 ×  K3 as a test case. JHEP 1404, 050 (2014) arXiv:1401.5908 [hep-th]ADSCrossRefGoogle Scholar
  4. 4.
    Benjamin, N., Dyer, E., Fitzpatrick, A.L., Kachru, S.: Universal Bounds on Charged States in 2dCFT and 3d Gravity. JHEP 1608, 041. arXiv:1603.09745 [hep-th] and references therein (2016)
  5. 5.
    DeWolfe O., Giryavets A., Kachru S., Taylor W.: Enumerating flux vacua with enhanced symmetries. JHEP 0502, 037 (2005) arXiv:hep-th/0411061 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Faltings, G.: Finiteness theorems for abelian varieties over number fields. Translated from the German original [Invent. Math. 73 no. 3, 349–366 (1983); ibid. 75 (1984), no. 2, 381] by Edward Shipz. Arithmetic geometry (Storrs, Conn., 1984), 9–27, Springer, New York (1986)Google Scholar
  7. 7.
    Gross, B.H.: Arithmetic on Elliptic Curves with Complex Multiplication Lecture Notes in Mathematics, vol. 776. Springer (1980)Google Scholar
  8. 8.
    Gukov S., Vafa C.: Rational conformal field theories and complex multiplication. Commun. Math. Phys. 246, 181 (2004) arXiv:hep-th/0203213 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hosono S., Lian B.H., Oguiso K., Yau S.T.: Classification of c = 2 rational conformal field theories via the Gauss product. Commun. Math. Phys. 241, 245 (2003) arXiv:hep-th/0211230 ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Iwaniec, H.: Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, vol. 17. American Mathematical Society (1997)Google Scholar
  11. 11.
    Kanno K., Watari T.: Revisiting arithmetic solutions to the W = 0 condition. Phys. Rev. D 96(10), 106001 (2017) arXiv:1705.05110 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kawai T., Yamada Y., Yang S.K.: Elliptic genera and N=2 superconformal field theory. Nucl. Phys. B 414, 191 (1994) arXiv:hep-th/9306096 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Koblitz, N.: Introduction to Elliptic Curves and Modular Forms, GTM 97. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  14. 14.
    Springer (1994) Lang, S.: Algebraic Number Theory, GTM 110. Springer, Berlin (1994)Google Scholar
  15. 15.
    Lang, S.: Elliptic Functions, GTM 112. Springer, Berlin (1987)CrossRefGoogle Scholar
  16. 16.
    Milne, J.S.: Lecture note Class Field Theory. http://www.jmilne.org/math/CourseNotes/cft.html
  17. 17.
    Miyake T.: Modular Forms. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  18. 18.
    Moore, G.W.: Arithmetic and attractors, arXiv:hep-th/9807087
  19. 19.
    Moore, G.W.: Attractors and arithmetic, arXiv:hep-th/9807056
  20. 20.
    Moore, G.W.: Strings and Arithmetic, arXiv:hep-th/0401049
  21. 21.
    Moreland, G.: Class field theory for number fields and complex multiplication a lecture note for the REU program 2016 at U. Chicago, http://math.uchicago.edu/~may/REU2016/
  22. 22.
    Neukirch J.: Algebraic Number Theory. Springer, Berlin (1992)zbMATHGoogle Scholar
  23. 23.
    Paquette N.M., Persson D., Volpato R.: Monstrous BPS-algebras and the superstring origin of moonshine. Commun. Num. Theor. Phys. 10, 433 (2016) arXiv:1601.05412 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schimmrigk R.: Arithmetic of Calabi–Yau varieties and rational conformal field theory. J. Geom. Phys. 44, 555 (2003) arXiv:hep-th/0111226 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schimmrigk R.: Aspects of conformal field theory from Calabi–Yau arithmetic. Fields Inst. Commun. 38, 233 (2003) arXiv:math/0209168 [math-ag]MathSciNetzbMATHGoogle Scholar
  26. 26.
    Schimmrigk R., Underwood S.: The Shimura–Taniyama conjecture and conformal field theory. J. Geom. Phys. 48, 169 (2003) arXiv:hep-th/0211284 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lynker M., Periwal V., Schimmrigk R.: Complex multiplication symmetry of black hole attractors. Nucl. Phys. B 667, 484 (2003) arXiv:hep-th/0303111 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lynker M., Periwal V., Schimmrigk R.: Black hole attractor varieties and complex multiplication. Fields Inst. Commun. 38, 209 (2003) arXiv:math/0306135 [math-ag]MathSciNetzbMATHGoogle Scholar
  29. 29.
    Lynker M., Schimmrigk R., Stewart S.: Complex multiplication of exactly solvable Calabi–Yau varieties. Nucl. Phys. B 700, 463 (2004) arXiv:hep-th/0312319 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lynker M., Schimmrigk R.: Geometric Kac–Moody modularity. J. Geom. Phys. 56, 843 (2006) arXiv:hep-th/0410189 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schimmrigk R.: Arithmetic spacetime geometry from string theory. Int. J. Mod. Phys. A 21, 6323 (2006) arXiv:hep-th/0510091 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schimmrigk R.: The Langlands program and string modular K3 surfaces. Nucl. Phys. B 771, 143 (2007) arXiv:hep-th/0603234 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schimmrigk R.: A Modularity test for elliptic mirror symmetry. Phys. Lett. B 655, 84 (2007) arXiv:0705.2427 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Schimmrigk R.: Emergent spacetime from modular motives. Commun. Math. Phys. 303, 1 (2011) arXiv:0812.4450 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    the arXiv:hep-th/0510091 article in [22].
  36. 36.
    Serre J.P., Tate J.: Good reduction of Abelian varieties. Ann. Math. 88, 492–517 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Serre, J.P.: A Course in Arithmetic, GTM 7. Springer, Berlin (1973)CrossRefGoogle Scholar
  38. 38.
    Shimura G.: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami/Princeton University Press, Princeton (1971)zbMATHGoogle Scholar
  39. 39.
    Shimura G.: On the zeta-function of an abelian variety with complex multiplication. Ann. Math. 94, 504–533 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Shimura G.: Abelian Varieties with Complex Multiplication and Modular Functions. Princeton University Press, Princeton (1998)CrossRefzbMATHGoogle Scholar
  41. 41.
    Silverman, J.: The Arithmetic of Elliptic Curves, GTM 106. Springer, Berlin (1986)CrossRefGoogle Scholar
  42. 42.
    Silverman, J.: Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151. Springer, Berlin (1994)CrossRefGoogle Scholar
  43. 43.
    Wendland, K.: Moduli Spaces of Unitary Conformal Field Theories, Ph.D. thesis, Universität Bonn (2000)Google Scholar
  44. 44.
    Chen, M.: Complex Multiplication, Rationality and Mirror Symmetry for Abelian Varieties and K3 Surfaces, Ph.D. thesis, Universität Bonn (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Middle East Technical UniversityKalkanliTurkey
  2. 2.Kavli Institute for the Physics and Mathematics of the UniverseUniversity of TokyoKashiwaJapan

Personalised recommendations