Advertisement

Back to Baxterisation

  • N. Crampe
  • E. Ragoucy
  • M. VanicatEmail author
Article
  • 5 Downloads

Abstract

In the continuity of our previous paper (Crampe et al. in Commun Math Phys 349:271, 2017, arXiv:1509.05516), we define three new algebras, \({\mathcal{A}_{\mathfrak{n}}(a,b,c)}\), \({\mathcal{B}_{\mathfrak{n}}}\) and \({\mathcal{C}_{\mathfrak{n}}}\), that are close to the braid algebra. They allow to build solutions to the Yang-Baxter equation with spectral parameters. The construction is based on a baxterisation procedure, similar to the one used in the context of Hecke or BMW algebras. The \({\mathcal{A}_{\mathfrak{n}}(a,b,c)}\) algebra depends on three arbitrary parameters, and when the parameter a is set to zero, we recover the algebra \({\mathcal{M}_{\mathfrak{n}}(b,c)}\) already introduced elsewhere for purpose of baxterisation. The Hecke algebra (and its baxterisation) can be recovered from a coset of the \({\mathcal{A}_{\mathfrak{n}}(0,0,c)}\) algebra. The algebra \({\mathcal{A}_{\mathfrak{n}}(0,b,-b^2)}\) is a coset of the braid algebra. The two other algebras \({\mathcal{B}_{\mathfrak{n}}}\) and \({\mathcal{C}_{\mathfrak{n}}}\) do not possess any parameter, and can be also viewed as a coset of the braid algebra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Jones, V.F.R.: Baxterisation, Int. J. Mod. Phys. B 4, 701 (1990). In: Proceedings of “Yang-Baxter equations, conformal invariance and integrability in statistical mechanics and field theory”, Canberra (1989)Google Scholar
  2. 2.
    Isaev, A.P.: Quantum groups and Yang-Baxter equations, Max-Planck Institut für Mathematik (2004)Google Scholar
  3. 3.
    Jimbo M.: A q-difference analogue of U(gl(n + 1)), Hecke algebra and the Yang-Baxter equation. Lett. Math. Phys. 11, 247 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng Y., Ge M.L., Xue K.: Yang-Baxterization of braid group representations. Commun. Math. Phys. 136, 195 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zhang R.B., Gould M.D., Bracken A.J.: From representations of the braid group to solutions of the Yang-Baxter equation. Nucl. Phys. B 354, 625 (1991)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Li Y.-Q.: Yang Baxterization. J. Math. Phys. 34, 757 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boukraa S., Maillard J.M.: Let’s Baxterise. J. Stat. Phys. 102, 641 (2001) arXiv:hep-th/0003212 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Arnaudon D., Chakrabarti A., Dobrev V.K., Mihov S.G.: Spectral decomposition and baxterisation of exotic bialgebras and associated noncommutative geometries. Int. J. Mod. Phys. A 18, 4201 (2003)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Kulish P.P., Manojlović N., Nagy Z.: Symmetries of spin systems and Birman–Wenzl–Murakami algebra. J. Math. Phys. 51, 043516 (2010) arXiv:0910.4036 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fonseca T., Frappat L., Ragoucy E.: R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz. J. Math. Phys. 56, 013503 (2015) arXiv:1406.3197 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Crampe N., Frappat L., RagoucyE Vanicat M.: A new braid-like algebra for baxterisation. Commun. Math. Phys. 349, 271 (2017) arXiv:1509.05516 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Vanicat, M.: Approche intégrabiliste des modèles de physique statistique hors d’équilibre. Section II.B.2.c, PhD thesis (in english) arXiv:1708.02440
  13. 13.
    Crampe N., Frappat L., Ragoucy E., Vanicat M.: 3-state Hamiltonians associated to solvable 33-vertex models. J. Math. Phys. 57, 093504 (2016) arXiv:1509.07589 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Isaev A.P., Ogievetsky O.V.: Baxterized solutions of reflection equation and integrable chain models. Nucl. Phys. B 760, 167 (2007) arXiv:math-ph/0510078 ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Charles Coulomb (L2C)UMR 5221 CNRS-Université de MontpellierMontpellierFrance
  2. 2.Laboratoire de Physique Théorique LAPThCNRS and Université Savoie Mont BlancAnnecy-le-Vieux CedexFrance

Personalised recommendations