Higgs Bundles, Branes and Langlands Duality

  • Indranil BiswasEmail author
  • Oscar García-Prada
  • Jacques Hurtubise


Given a compact connected Riemann surface X equipped with an anti-holomorphic involution and a complex semisimple Lie group G equipped with a real structure, we define anti-holomorphic involutions on the moduli space of G-Higgs bundles over X. We describe how the various components of the fixed point locus match up, as one passes from G to its Langlands dual LG. As an example, the case of \({G\,=\, {\rm SL}(2,{\mathbb C})}\) and \({^LG\,=\,{\rm PGL}(2,\mathbb{C})}\) is investigated in detail.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank International Centre for Theoretical Sciences for hospitality while a part of the work was carried out. The first author is partially supported by a J. C. Bose Fellowship.


  1. BS1.
    Baraglia D., Schaposnik L.: Higgs bundles and (A, B, A)-branes. Commun. Math. Phys. 331, 1271–1300 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. BS2.
    Baraglia D., Schaposnik L.P.: Real structures on moduli spaces of Higgs bundles. Adv. Theor. Math. Phys. 20, 525–551 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. BGa.
    Biswas I., Garcia-Prada O.: Antiholomorphic involutions of the moduli spaces of Higgs bundles. J. Éc. Polytech. Math. 2, 35–54 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. BGH1.
    Biswas I., Garcia-Prada O., Hurtubise J.: Pseudo-real principal Higgs bundles on compact Kähler manifolds. Ann. Inst. Fourier 64, 2527–2562 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. BGH2.
    Biswas I., Garcia-Prada O., Hurtubise J.: Pseudo-real principal G-bundles over a real curve. J. Lond. Math. Soc. 93, 47–64 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. BGo.
    Biswas I., Gómez T.L.: Connections and Higgs fields on a principal bundle. Ann. Glob. Anal. Geom. 33, 19–46 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. BHH.
    Biswas I., Huisman J., Hurtubise J.: The moduli space of stable vector bundles over a real algebraic curve. Math. Ann. 347, 201–233 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Ca.
    Cartan É.: Les groupes réels simples, finis et continus. Ann. Éc. Norm. Sup. 31, 263–355 (1914)CrossRefzbMATHGoogle Scholar
  9. CR.
    Curtis C.W., Reiner I.: Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics. Interscience Publishers, Geneva (1962)zbMATHGoogle Scholar
  10. Do1.
    Donagi R.: Decomposition of spectral covers. Astérisque 218, 145–175 (1993)MathSciNetzbMATHGoogle Scholar
  11. Do2.
    Donagi R.: Spectral Covers, Current Topics in Complex Algebraic Geometry (Berkeley, CA, 1992/93), pp. 65–88. Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (1995)Google Scholar
  12. DG.
    Donagi R., Gaitsgory D.: The gerbe of Higgs bundles. Transform Groups 7, 109–153 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. DP.
    Donagi R., Pantev T.: Langlands duality for Hitchin systems. Invent Math. 189, 653–735 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Fa.
    Faltings G.: Stable G-bundles and projective connections. J. Algebr. Geom. 2, 507–568 (1993)MathSciNetzbMATHGoogle Scholar
  15. Ga.
    García-Prada, O.: Involutions of the moduli space of \({{\rm SL}(n, \mathbb{C})}\) -Higgs bundles and real forms. In: Casnati, G., Catanese, F., Notari, R. (eds.) Vector Bundles and Low Codimensional Subvarieties: State of the Art and Recent Developments, Quaderni di Matematica (2007)Google Scholar
  16. GGM.
    García-Prada, O., Gothen, P.B., Mundet i Riera, I.: The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations (2009). arXiv:0909.4487
  17. GR.
    García-Prada, O., Ramanan, S.: Involutions and higher order automorphisms of Higgs bundle moduli spaces. arXiv:1605.05143
  18. GW.
    García-Prada, O., Wilkin, G.: Action of the mapping class group on character varieties and Higgs bundles. arXiv:1612.02508
  19. GWZ.
    Groechenig, M., Wyss, D., Ziegler, P.: Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration. arXiv:1707.06417 [math.AG]
  20. HT.
    Hausel T., Thaddeus M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent Math. 153, 197–229 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. HS.
    Heller, S., Schaposnik, L.P.: Branes through finite group actions. arXiv:1611.00391
  22. Hi1.
    Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Hi2.
    Hitchin N.J.: Stable bundles and integrable systems. Duke Math. J. 54, 91–114 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Hi3.
    Hitchin N.J.: Langlands duality and G2 spectral curves. Q. J. Math. 58, 319–344 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. KW.
    Kapustin A., Witten E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Thoery Phys. 1, 1–236 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Na.
    Nadler D.: Perverse sheaves on real loop Grassmannians. Invent Math. 159, 1–73 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. Sc.
    Scognamillo R.: An elementary approach to the abelianization of the Hitchin system for arbitrary reductive groups. Compos. Math. 110, 17–37 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  28. SYZ.
    Strominger A., Yau S.-T., Zaslow E.: Mirror symmetry is T-duality. Nucl. Phys. B 479, 243–259 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Indranil Biswas
    • 1
    Email author
  • Oscar García-Prada
    • 2
  • Jacques Hurtubise
    • 3
  1. 1.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia
  2. 2.Instituto de Ciencias MatemáticasMadridSpain
  3. 3.Department of MathematicsMcGill UniversityMontrealCanada

Personalised recommendations