Distribution of the Periodic Points of the Farey Map

  • Byron HeersinkEmail author


We expand the cross section of the geodesic flow in the tangent bundle of the modular surface given by Series to produce another section whose return map under the geodesic flow is a double cover of the natural extension of the Farey map. We use this cross section to extend the correspondence between the closed geodesics on the modular surface and the periodic points of the Gauss map to include the periodic points of the Farey map. Then, analogous to the work of Pollicott, we prove an equidistribution result for the periodic points of the Farey map when they are ordered according to the length of their corresponding closed geodesics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I thank my advisor Florin Boca as well as Claire Merriman for many helpful discussions which inspired this paper. I particularly thank Merriman for making me aware of the characterization of the periodic points of F. I also thank the referee for helpful suggestions that improved the presentation of this paper. I also acknowledge support from Department of Education Grant P200A090062, “University of Illinois GAANN Mathematics Fellowship Project.”


  1. 1.
    Arnoux P.: Le codage du flot géodésique sur la surface modulaire. Enseign. Math. (2) 40(1-2), 29–48 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Artin E.: Ein mechanisches system mit quasiergodischen bahnen. Abh. Math. Semin. Univ. Hambg. 3(1), 170–175 (1924)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Boca, F.P.: Products of matrices \({\left[ \begin{matrix} 1 & 1\\ 0 & 1 \end{matrix} \right]}\) and \({\left[ \begin{matrix} 1 & 0\\ 1 & 1\end{matrix} \right]}\) and the distribution of reduced quadratic irrationals. J. Reine Angew. Math. 606, 149–165 (2007)Google Scholar
  4. 4.
    Brown G., Yin Q.: Metrical theory for Farey continued fractions. Osaka J. Math. 33(4), 951–970 (1996)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Faivre C.: Distribution of Lévy constants for quadratic numbers. Acta Arith. 61(1), 13–34 (1992)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Feigenbaum M.: Presentation functions, fixed points, and a theory of scaling function dynamics. J. Stat. Phys. 52(3-4), 527–569 (1988)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Feigenbaum M., Procaccia I., Tél T.: Scaling properties of multifractals as an eigenvalue problem. Phys. Rev. A (3) 39(10), 5359–5372 (1989)ADSMathSciNetGoogle Scholar
  8. 8.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16 (1955)Google Scholar
  9. 9.
    Grothendieck A.: La théorie de Fredholm. Bull. Soc. Math. France 84, 319–384 (1956)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Heersink, B.: Applications of dynamical systems to Farey sequences and continued fractions. Ph.D. Thesis, University of Illinois at Urbana-Champaign (2017)Google Scholar
  11. 11.
    Ito S.: Algorithms with mediant convergents and their metrical theory. Osaka J. Math. 26(3), 557–578 (1989)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kallies J., Özlük A., Peter M., Snyder C.: On asymptotic properties of a number theoretic function arising out of a spin chain model in statistical mechanics. Commun. Math. Phys. 222(1), 9–43 (2001)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Kato, T.: Perturbation Theory for Linear Operators. (Reprint of the 1980 edition.) Classics in Mathematics, Springer, Berlin (1995)Google Scholar
  14. 14.
    Keller G., Nowicki T.: Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps. Commun. Math. Phys. 149(1), 31–69 (1992)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Kelmer D.: Quadratic irrationals and linking numbers of modular knots. J. Mod. Dyn. 6(4), 539–561 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kesseböhmer M., Stratmann B.: Fractal analysis for sets of non-differentiability of Minkowski’s question mark function. J. Number Theory 128(9), 2663–2686 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kontorovich A., Oh H.: Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. J. Am. Math. Soc. 24(3), 603–648 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Korevaar J.: Tauberian Theory: A Century of Developments. Grundlehren der Mathematischen Wissenschaften, vol. 329. Springer, Berlin (2004)Google Scholar
  19. 19.
    Lalley, S.P.: Probabilistic methods in certain counting problems of ergodic theory. In: Bedford T., Keane, M., Series, C., (eds.) Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, pp. 223–258. Oxford University Press, Oxford (1991)Google Scholar
  20. 20.
    Mayer D.: On a \({\zeta}\) function related to the continued fraction transformation. Bull. Soc. Math. France 104(2), 195–203 (1976)ADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Minkowski, H.: Zur Geometrie der Zahlen. In: Hilbert, D. (ed.) Gesammelte Abhandlungen, vol. 2, pp. 43–52. Teubner, Leipzig (1911)Google Scholar
  22. 22.
    Morita T.: Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Jpn. 46(2), 309–343 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    von Neumann J.: Proof of the quasi-ergodic hypothesis. Proc. Natl. Acad. Sci. USA 18(1), 70–82 (1932)ADSzbMATHGoogle Scholar
  24. 24.
    Oh H., Shah N.: The asymptotic distribution of circles in the orbits of Kleinian groups. Invent. Math. 187(1), 1–35 (2012)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Oh, H., Shah, N.: Counting visible circles on the sphere and Kleinian groups. In: Aravinda, C.S., Farrell, F.T., Lafont, J.F. (eds.) Geometry, Topology, and Dynamics in Negative Curvature. London Mathematical Society Lecture Note series, vol. 425, pp. 272–288. Cambridge University Press, Cambridge (2016)Google Scholar
  26. 26.
    Oh H., Shah N.: Equidistribution and counting for orbits of geometrically finite hyperbolic groups. J. Am. Math. Soc. 26(2), 511–562 (2013)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Parry W.: Bowen’s equidistribution theory and the Dirichlet density theorem. Ergod. Theory Dyn. Syst. 4(1), 117–134 (1984)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Parry W., Pollicott M.: An analogue of the prime number theorem for closed orbits of Axiom A flows. Ann. Math. 118(3), 573–591 (1983)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Pollicott M.: Distribution of closed geodesics on the modular surface and quadratic irrationals. Bull. Soc. Math. France 114(4), 431–446 (1986)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Pollicott, M., Urbański, M.: Asymptotic counting in conformal dynamical systems. Mem. Am. Math. Soc. (to appear). arXiv:1704.06896
  31. 31.
    Series C.: The modular surface and continued fractions. J. Lond. Math. Soc. (2) 31(1), 69–80 (1985)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Technau, M.: The Calkin-Wilf tree and a trace condition. Master’s thesis, Julius-Maximilian’s University of Würzburg (2015)Google Scholar
  33. 33.
    Ustinov, A.V.: Spin chains and Arnold’s problem on the Gauss-Kuz’min statistics for quadratic irrationals. Mat. Sb. 204(5), 143–160 (2013); English translation: Sb. Math. 204(5), 762–779 (2013)Google Scholar
  34. 34.
    Wirsing E.: On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces. Acta Arith. 24, 507–528 (1973)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA
  2. 2.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations