Advertisement

Communications in Mathematical Physics

, Volume 369, Issue 2, pp 761–809 | Cite as

Universality Results for Kinetically Constrained Spin Models in Two Dimensions

  • Fabio Martinelli
  • Robert Morris
  • Cristina ToninelliEmail author
Article

Abstract

Kinetically constrained models (KCM) are reversible interacting particle systems on \({\mathbb{Z}^{d}}\) with continuous timeMarkov dynamics of Glauber type, which represent a natural stochastic (and non-monotone) counterpart of the family of cellular automata known as \({\mathcal{U}}\)-bootstrap percolation. KCM also display some of the peculiar features of the so-called “glassy dynamics”, and as such they are extensively used in the physics literature to model the liquid-glass transition, a major and longstanding open problem in condensed matter physics. We consider two-dimensional KCM with update rule \({\mathcal{U}}\), and focus on proving universality results for the mean infection time of the origin, in the same spirit as those recently established in the setting of \({\mathcal{U}}\)-bootstrap percolation. We first identify what we believe are the correct universality classes, which turn out to be different from those of \({\mathcal{U}}\)-bootstrap percolation. We then prove universal upper bounds on the mean infection time within each class, which we conjecture to be sharp up to logarithmic corrections. In certain cases, including all supercritical models, and the well-known Duarte model, our conjecture has recently been confirmed in Marêché et al. (Exact asymptotics for Duarte and supercritical rooted kinetically constrained models). In fact, in these cases our upper bound is sharp up to a constant factor in the exponent. For certain classes of update rules, it turns out that the infection time of the KCM diverges much faster than for the corresponding \({\mathcal{U}}\)-bootstrap process when the equilibrium density of infected sites goes to zero. This is due to the occurrence of energy barriers which determine the dominant behaviour for KCM, but which do not matter for the monotone bootstrap dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work has been supported by the ERC Starting Grant 680275 “MALIG”, ANR-15-CE40-0020-01 and by the PRIN 20155PAWZB “Large Scale Random Structures”. RM is also partially supported by CNPq (Proc. 303275/2013-8) and by FAPERJ (Proc. 201.598/2014).

References

  1. 1.
    Aldous D., Diaconis P.: The asymmetric one-dimensional constrained Ising model: rigorous results. J. Stat. Phys. 107(5-6), 945–975 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andersen H.C., Fredrickson G.H.: Kinetic Ising model of the glass transition. Phys. Rev. Lett. 53(13), 1244–1247 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    Asselah A., Dai Pra P.: Quasi-stationary measures for conservative dynamics in the infinite lattice. Ann. Prob. 29(4), 1733–1754 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Balister P., Bollobás B., Przykucki M.J., Smith P.: Subcritical \({\mathcal{U}}\)-bootstrap percolation models have non-trivial phase transitions. Trans. Am. Math. Soc. 368, 7385–7411 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bollobás, B., Duminil-Copin, H., Morris, R., Smith, P.: Universality of two-dimensional critical cellular automata. In: Proceedings of the London Mathematical Society (2016, to appear). arXiv:1406.6680
  6. 6.
    Bollobás B., Duminil-Copin H., Morris R., Smith P.: The sharp threshold for the Duarte model. Ann. Prob. 45, 4222–4272 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Blondel O., Cancrini N., Martinelli F., Roberto C., Toninelli C.: Fredrickson-Andersen one spin facilitated model out of equilibrium. Markov Proc. Rel. Fields 19, 383–406 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bollobás B., Smith P., Uzzell A.: Monotone cellular automata in a random environment. Comb. Probab. Comput. 24(4), 687–722 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cancrini, N., Martinelli, F., Roberto, C., Toninelli, C.: Facilitated spin models: recent and new results, methods of contemporary mathematical statistical physics. Lecture Notes in Math., Vol. 1970, pp. 307–340. Springer, Berlin (2009)Google Scholar
  10. 10.
    Cancrini N., Martinelli F., Roberto C., Toninelli C.: Kinetically constrained spin models. Prob. Theory Rel. Fields 140(3-4), 459–504 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cancrini N., Martinelli F., Schonmann R., Toninelli C.: Facilitated oriented spin models: some non equilibrium results. J. Stat. Phys. 138(6), 1109–1123 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chleboun P., Faggionato A., Martinelli F.: Mixing time and local exponential ergodicity of the East-like process in \({\mathbb{Z}^{d}}\). Ann. Fac. Sci. Toulouse Math. Sér 6 24(4), 717–743 (2015)CrossRefzbMATHGoogle Scholar
  13. 13.
    Chleboun P., Faggionato A., Martinelli F.: Time scale separation and dynamic heterogeneity in the low temperature East model. Commun. Math. Phys. 328, 955–993 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chleboun P., Faggionato A., Martinelli F.: Relaxation to equilibrium of generalized East processes on \({\mathbb{Z}^{d}}\):Renormalisation group analysis and energy-entropy competition.Ann. Prob. 44(3), 1817–1863 (2016)CrossRefzbMATHGoogle Scholar
  15. 15.
    Chung F., Diaconis P., Graham R.: Combinatorics for the East model. Adv. Appl. Math. 27(1), 192–206 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Duarte J.A.M.S.: Simulation of a cellular automaton with an oriented bootstrap rule. Phys. A. 157(3), 1075–1079 (1989)CrossRefGoogle Scholar
  17. 17.
    Duminil-Copin H., van Enter A.C.D.: Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Prob. 41, 1218–1242 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Duminil-Copin, H., van Enter, A.C.D., Hulshof, T.: Higher order corrections for anisotropic bootstrap percolation (2016). arXiv:1611.03294
  19. 19.
    van Enter A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48, 943–945 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Faggionato A., Martinelli F., Roberto C., Toninelli C.: The East model: recent results and new progresses. Markov Proc. Rel. Fields 19, 407–458 (2013)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Faggionato A., Martinelli F., Roberto C., Toninelli C.: A ging through hierarchical coalescence in the East model. Commun. Math. Phys. 309, 459–495 (2012)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Garrahan, J.P., Sollich, P., Toninelli, C.: Kinetically constrained models. In: Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L., van Saarloos, W. (eds.) Dynamical Heterogeneities in Glasses, Colloids, and Granular Media. Oxford University Press, Oxford (2011)Google Scholar
  23. 23.
    Jäckle J., Eisinger S.: A hierarchically constrained kinetic Ising model. Z. Phys. B: Condens. Matter 84(1), 115–124 (1991)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Levin D.A., Peres Y., Wilmer E.L.: Markov Chains and Mixing Times. AmericanMathematical Society, Providence (2008)CrossRefGoogle Scholar
  25. 25.
    Liggett T.M.: Interacting Particle Systems. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  26. 26.
    Martinelli, F., Toninelli, C.: Towards a universality picture for the relaxation to equilibrium of kinetically constrained models. Ann. Prob. (2018, to appear). arXiv:1701.00107
  27. 27.
    Marêché, L.,Martinelli, F.,Toninelli, C.: Exact asymptotics for Duarte and supercritical rooted kinetically constrained models. arXiv:1807.07519
  28. 28.
    Mountford T.S.: Critical length for semi-oriented bootstrap percolation. Stoch. Proc. Appl. 56(2), 185–205 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Morris R.: Bootstrap percolation, and other automata. Eur. J. Combin. 66, 250–263 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pillai N.S., Smith A.: Mixing times for a constrained Ising process on the torus at low density. Ann. Prob. 45(2), 1003–1070 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ritort F., Sollich P.: Glassy dynamics of kinetically constrained models. Adv. Phys. 52(4), 219–342 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Saloff-Coste, L., Bernard, P.: Lectures on finite Markov chains. In: Bernard, P. (ed.) Lecture Notes in Mathematics, vol.1665. Springer, Berlin (1997)Google Scholar
  33. 33.
    Schonmann R.: On the behaviour of some cellular automata related to bootstrap percolation. Ann. Prob. 20, 174–193 (1992)CrossRefzbMATHGoogle Scholar
  34. 34.
    Schonmann R.: Critical points of two-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58, 1239–1244 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sollich P., Evans M.R.: Glassy time-scale divergence and anomalous coarsening in a kinetically constrained spin chain. Phys. Rev. Lett 83, 3238–3241 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità Roma TreRomeItaly
  2. 2.IMPARio de JaneiroBrazil
  3. 3.Laboratoire de Probabilités, Modélisation et StatistiqueCNRS-UMR 7599 Universités Paris VI-VII 4Paris Cedex 05France

Personalised recommendations