Quantum Symmetries of the Twisted Tensor Products of C*-Algebras

  • Jyotishman Bhowmick
  • Arnab Mandal
  • Sutanu Roy
  • Adam SkalskiEmail author
Open Access


We consider the construction of twisted tensor products in the category of C*-algebras equipped with orthogonal filtrations and under certain assumptions on the form of the twist compute the corresponding quantum symmetry group, which turns out to be the generalized Drinfeld double of the quantum symmetry groups of the original filtrations. We show how these results apply to a wide class of crossed products of C*-algebras by actions of discrete groups. We also discuss an example where the hypothesis of our main theorem is not satisfied and the quantum symmetry group is not a generalized Drinfeld double.



The second author was supported by the National Postdoctoral Fellowship given by SERB-DST, Government of India Grant No. PDF/2017/001795. The third author was partially supported by an Early Career Research Award given by SERB-DST, Government of India Grant No. ECR/2017/001354. The last author was partially supported by the National Science Centre (NCN) Grant No. 2014/14/E/ST1/00525. This work was started during the internship of the second author at IMPAN in 2016, funded by the Warsaw Center for Mathematical Sciences. A.M. thanks A.S. for his kind hospitality at IMPAN. We thank the referees for their thoughtful comments and suggestions.


  1. 1.
    Aubrun, G., Skalski, A., Speicher, R.: Quantum Symmetries, Lecture Notes in Mathematics, vol. 2189. Springer, Berlin (2017).
  2. 2.
    Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de C *-algèbres. Ann. Sci. École Norm. Sup. (4), 26(4), 425–488 (1993). MathSciNetCrossRefGoogle Scholar
  3. 3.
    Banica T.: Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224(2), 243–280 (2005) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Banica T.: Quantum automorphism groups of small metric spaces. Pac. J. Math. 219(1), 27–51 (2005) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Banica, T.: Quantum isometries, noncommutative spheres, and related integrals (2016). eprint, arXiv:1601.02159
  6. 6.
    Banica T., Skalski A.G.: Two-parameter families of quantum symmetry groups. J. Funct. Anal. 260(11), 3252–3282 (2011) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Banica, T., Skalski, A.G.: Quantum isometry groups of duals of free powers of cyclic groups. Int. Math. Res. Not. IMRN 9, 2094–2122 (2012).
  8. 8.
    Banica T., Skalski A.G.: Quantum symmetry groups of C *-algebras equipped with orthogonal filtrations. Proc. Lond. Math. Soc. (3) 106(5), 980–1004 (2013) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bhowmick J., Goswami D.: Quantum group of orientation-preserving Riemannian isometries. J. Funct. Anal. 257(8), 2530–2572 (2009) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bhowmick J., Goswami D., Skalski A.: Quantum isometry groups of 0-dimensional manifolds. Trans. Am. Math. Soc. 363(2), 901–921 (2011) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bhowmick J., Neshveyev S., Sangha A.: Deformation of operator algebras by Borel cocycles. J. Funct. Anal. 265(6), 983–1001 (2013) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bhowmick J., Skalski A.: Quantum isometry groups of noncommutative manifolds associated to group C *-algebras. J. Geom. Phys. 60(10), 1474–1489 (2010) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bichon J.: Quantum automorphism groups of finite graphs. Proc. Am. Math. Soc. 131(3), 665–673 (2003) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Christensen E., Ivan C.: Spectral triples for AF C *-algebras and metrics on the Cantor set. J. Oper. Theory. 56(1), 17–46 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chamseddine A.H., Connes A.: Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Part I. Fortschr. Phys. 58(6), 553–600 (2010) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Connes, A.: Noncommutative geometry. Academic Press, Inc., San Diego, CA (1994)Google Scholar
  17. 17.
    Cuntz J., Krieger W.: A class of C *-algebras and topological Markov chains. Invent. Math. 56(3), 251–268 (1980) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Chanvalon M.T.: Quantum symmetry groups of Hilbert modules equipped with orthogonal filtrations. J. Funct. Anal. 266(5), 3208–3235 (2014) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fischer, R.: Volle verschränkte Produkte für Quantengruppen und äquivariante KK-Theorie, Ph.D. Thesis, Westf. Wilhelms-Universität Münster (2003)
  20. 20.
    Goswami D.: Quantum group of isometries in classical and noncommutative geometry. Commun. Math. Phys. 285(1), 141–160 (2009) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Goswami, D., Bhowmick, J.: Quantum Isometry Groups, Infosys Science Foundation Series, Infosys Science Foundation Series in Mathematical Sciences. Springer, New Delhi (2016).
  22. 22.
    Goswami D., Roy S.: Faithful actions of locally compact quantum groups on classical spaces. Lett. Math. Phys. 107(7), 1375–1390 (2017) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Joardar, S., Mandal, A.: Quantum Symmetry of Graph C*-algebras associated with connected Graphs. eprint, arXiv:1711.04253 (2017)
  24. 24.
    Joardar, S., Mandal, A.: Quantum symmetry of graph C*-algebras at critical inverse temperature. eprint, arXiv:1803.08012 (2018)
  25. 25.
    Kasprzak P.: Rieffel deformation via crossed products. J. Funct. Anal. 257(5), 1288–1332 (2009) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Katsura T.: The ideal structures of crossed products of Cuntz algebras by quasi-free actions of abelian groups. Can. J. Math. 55(6), 1302–1338 (2003) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kustermans J.: Locally compact quantum groups in the universal setting. Int. J. Math. 12(3), 289–338 (2001) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kustermans J., Vaes S.: Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4) 33(6), 837–934 (2000) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kustermans J., Vaes S.: Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92(1), 68–92 (2003) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kyed D., Sołtan P.M.: Property (T) and exotic quantum group norms. J. Noncommut. Geom. 6(4), 773–800 (2012) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mandal A.: Quantum isometry group of dual of finitely generated discrete groups—II. Ann. Math. Blaise Pascal 23(2), 219–247 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Masuda T., Nakagami Y.: A von Neumann algebra framework for the duality of the quantum groups. Publ. Res. Inst. Math. Sci 30(5), 799–850 (1994) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Masuda T., Nakagami Y., Woronowicz S.L.: A C *-algebraic framework for quantum groups. Int. J. Math. 14(9), 903–1001 (2003) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Meyer R., Roy S., Woronowicz S.L.: Homomorphisms of quantum groups. Münster J. Math. 5, 1–24 (2012) MathSciNetzbMATHGoogle Scholar
  35. 35.
    Meyer R., Roy S., Woronowicz S.L.: Quantum group-twisted tensor products of C*-algebras. Int. J. Math. 25(2), 1450019–1450037 (2012) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Pedersen, G.K.: C *-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, London (1979)Google Scholar
  37. 37.
    Raum, S., Weber, M.: A connection between easy quantum groups, varieties of groups and reflection groups. eprint, arXiv:1212.4742v2 (2017)
  38. 38.
    Rieffel, M.A.: Deformation quantization for actions of \({\mathbf{R}^d}\). Mem. Am. Math. Soc. 106(506):x+93 (1993)
  39. 39.
    Roy, S.: The Drinfeld double for C *-algebraic quantum groups. J. Oper. Theory 74(2), 485–515 (2015)
  40. 40.
    Roy S., Timmermann T.: The maximal quantum group-twisted tensor product of C *-algebras. J. Noncommut. Geom. 12(1), 279–330 (2018) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Schmidt, S., Weber, M.: Quantum symmetries of graph C *-algebras. eprint, arXiv:1706.08833v2 (2017)
  42. 42.
    Sołtan P.M., Woronowicz S.L.: From multiplicative unitaries to quantum groups. II. J. Funct. Anal. 252(1), 42–67 (2007) MathSciNetCrossRefGoogle Scholar
  43. 43.
    Speicher, R., Weber, M.: Quantum groups with partial commutation relations. eprint, arXiv:1603.09192v1 (2017)
  44. 44.
    Van Daele A.: An algebraic framework for group duality. Adv. Math. 140(2), 323–366 (1998) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Drinfel'd, V.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Berkeley, CA, pp. 798–820 (1987)Google Scholar
  46. 46.
    Wang S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195(1), 195–211 (1998) ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Woronowicz S.L.: From multiplicative unitaries to quantum groups. Int. J. Math. 7(1), 127–149 (1996) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Woronowicz, S.L.: Compact quantum groups, Symétries quantiques, Les Houches, 1995, vol. 1998. North-Holland, Amsterdam, pp. 845–884 (1995)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Jyotishman Bhowmick
    • 1
  • Arnab Mandal
    • 2
  • Sutanu Roy
    • 2
  • Adam Skalski
    • 3
    Email author
  1. 1.Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia
  2. 2.School of Mathematical SciencesNational Institute of Science Education and Research Bhubaneswar, HBNIJatniIndia
  3. 3.Institute of Mathematics of the Polish Academy of SciencesWarsawPoland

Personalised recommendations