Advertisement

Communications in Mathematical Physics

, Volume 364, Issue 2, pp 719–764 | Cite as

Localization in the Disordered Holstein Model

  • Rajinder Mavi
  • Jeffrey Schenker
Article
  • 56 Downloads

Abstract

The Holstein model describes the motion of a tight-binding tracer particle interacting with a field of quantum harmonic oscillators. We consider this model with an on-site random potential. Provided the hopping amplitude for the particle is small, we prove localization for matrix elements of the resolvent, in particle position and in the field Fock space. These bounds imply a form of dynamical localization for the particle position that leaves open the possibility of resonant tunneling in Fock space between equivalent field configurations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdul-Rahman H., Nachtergaele B., Sims R., Stolz G.: Localization properties of the disordered XY spin chain. Annalen der Physik 529(7), 1600280 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Aizenman M., Elgart A., Naboko S., Schenker J., Stolz G.: Moment analysis for localization in random Schrödinger operators. Invent. Math. 163(2), 343–413 (2006)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Aizenman M., Schenker J., Friedrich R.M., Hundertmark D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224(1), 219–253 (2001)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Aizenman M., Warzel S.: Localization bounds for multiparticle systems. Commun. Math. Phys. 290(3), 903–934 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Aizenman, M., Warzel, S.: Random Operators. Graduate Studies in Mathematics, vol. 168, AMS, Providence (2015)Google Scholar
  6. 6.
    Anderson P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)ADSCrossRefGoogle Scholar
  7. 7.
    Basko D.M., Aleiner I.L., Altshuler B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321(5), 1126–1205 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Beaud, V., Warzel, S.: Low-energy fock-space localization for attractive hard-core particles in disorder. Ann. Henri Poincaré 18, 3143 (2017)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chulaevsky V., Suhov Y.: Multi-particle anderson localisation: induction on the number of particles. Math. Phys. Anal. Geom. 12(2), 117–139 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Disertori, M., Kirsch, W., Klein, A., Klopp, F., Rivasseau, V.: Random schrödinger operators, volume 25 of panoramas et syntheses [panoramas and syntheses]. Société Mathématique de France, Paris (2008)Google Scholar
  11. 11.
    Elgart A., Klein A., Stolz G.: Many-body localization in the droplet spectrum of the random XXZ quantum spin chain. J. Funct. Anal. 275(1), 211–258 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Glauber R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766 (1963)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Holstein T.: Studies of polaron motion: part I. The molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959)ADSCrossRefGoogle Scholar
  14. 14.
    Holstein T.: Studies of polaron motion: part II. The “small” polaron. Ann. Phys. 8(3), 343–389 (1959)ADSCrossRefGoogle Scholar
  15. 15.
    Imbrie J.Z.: On many-body localization for quantum spin chains. J. Stat. Phys. 163(5), 998–1048 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kato T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995)CrossRefGoogle Scholar
  17. 17.
    Lagendijk A., van~Tiggelen B., Wiersma D.S.: Fifty-years of Anderson localization. Phys. Today. 62(8), 24–29 (2009)CrossRefGoogle Scholar
  18. 18.
    Mastropietro V.: Localization in interacting fermionic chains with quasi-random disorder. Commun. Math. Phys. 351(1), 283–309 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Mavi, R., Schenker, J.: Resonant tunneling in a system with correlated pure point spectrum. arXiv:1705.03039 (2017)
  20. 20.
    Nandkishore R., Huse D.A.: Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6(1), 15–38 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Pal A., Huse D.A.: Many-body localization phase transition. Phys. Rev. B 82(17), 174411 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Perelomov A.M.: Generalized coherent states and some of their applications. Sov. Phys. Uspekhi. 20(9), 703 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    Schenker J.: How large is large? Estimating the critical disorder for the Anderson model. Lett. Math. Phys. 105(1), 1–9 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations