Advertisement

The Motion of Small Bodies in Space-Time

  • Robert Geroch
  • James Owen Weatherall
Article
  • 10 Downloads

Abstract

We consider the motion of small bodies in general relativity. The key result captures a sense in which such bodies follow timelike geodesics (or, in the case of charged bodies, Lorentz-force curves). This result clarifies the relationship between approaches that model such bodies as distributions supported on a curve, and those that employ smooth fields supported in small neighborhoods of a curve. This result also applies to “bodies” constructed from wave packets of Maxwell or Klein–Gordon fields. There follows a simple and precise formulation of the optical limit for Maxwell fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein A., Grommer J.: Allgemeine Relativitätstheorie und Bewegungsgesetz. Verlag der Akademie der Wissenschaften, Berlin (1927)zbMATHGoogle Scholar
  2. 2.
    Einstein A., Infeld L., Hoffman B.: The gravitational equations and the problem of motion. Ann. Math. 39(1), 65–100 (1938)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Asada H., Futamase T., Hogan P.A.: Equations of Motion in General Relativity. Oxford University Press, Oxford (2011)zbMATHGoogle Scholar
  4. 4.
    Poisson E., Pound A., Vega I.: The motion of point particles in curved spacetime. In: Living Reviews in Relativity, vol. 14, no. 7 (2011)Google Scholar
  5. 5.
    Gralla S.E., Wald R.M.: A rigorous derivation of gravitational self-force. Class. Quantum Gravity 28(15), 159501 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Puetzfeld, D., Lämmerzahl, C., Schutz, B. (ed.): Equations of Motion in Relativistic Gravity. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Malament D.: A remark about the geodesic principle in general relativity. In: Frappier, M., Brown, D.H., DiSalle, R. (eds) Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos, pp. 245–252. Springer, New York (2012)CrossRefGoogle Scholar
  8. 8.
    Dixon W.G.: A covariant multipole formalism for extended test bodies in general relativity. Il Nuovo Cimento 34(2), 317–339 (1964)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Mathisson M.: Die mechanik des materieteilchens in der allgemeinen relativitätstheorie.. Zeitschrift für Physik 67, 826–844 (1931)ADSCrossRefGoogle Scholar
  10. 10.
    Souriau J.-M.: Modèle de particule à spin dans le champ électromagnétique et gravitationnel. Annales de l’Institut Henri Poincaré Sec. A 20, 315 (1974)Google Scholar
  11. 11.
    Sternberg S., Guillemin V.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
  12. 12.
    Geroch R., Jang P.S.: Motion of a body in general relativity. J. Math. Phys. 16(1), 65 (1975)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ehlers J., Geroch R.: Equation of motion of small bodies in relativity. Ann. Phys. 309, 232–236 (2004)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Papapetrou A.: Spinning test particles in general relativity. Proc. R. Soc. 290, 248–258 (1951)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Weatherall J.O.: The motion of a body in Newtonian theories. J. Math. Phys. 52(3), 032502 (2011)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Enrico Fermi InstituteThe University of ChicagoChicagoUSA
  2. 2.Department of Logic and Philosophy of ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations